留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上硬下软地层中h型桩与滑坡相互作用机理模型试验研究

丰月华 罗晓娟 李俊良 曹泽华 姚文敏 宋成彬

丰月华, 罗晓娟, 李俊良, 曹泽华, 姚文敏, 宋成彬. 上硬下软地层中h型桩与滑坡相互作用机理模型试验研究[J]. 地质科技通报, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229
引用本文: 丰月华, 罗晓娟, 李俊良, 曹泽华, 姚文敏, 宋成彬. 上硬下软地层中h型桩与滑坡相互作用机理模型试验研究[J]. 地质科技通报, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229
Feng Yuehua, Luo Xiaojuan, Li Junliang, Cao Zehua, Yao Wenmin, Song Chengbin. Physical model tests on the interaction of h-type stabilizing piles and landslides in bedrock with upper hard and lower weak strata[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229
Citation: Feng Yuehua, Luo Xiaojuan, Li Junliang, Cao Zehua, Yao Wenmin, Song Chengbin. Physical model tests on the interaction of h-type stabilizing piles and landslides in bedrock with upper hard and lower weak strata[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229

上硬下软地层中h型桩与滑坡相互作用机理模型试验研究

doi: 10.19509/j.cnki.dzkq.2022.0229
基金项目: 

国家自然科学基金优秀青年科学基金项目 41922055

浙江省交通运输厅科技计划项目 2021023

国家自然科学基金项目 42107181

中国博士后科学基金资助项目 2021M702932

详细信息
    作者简介:

    丰月华(1976-), 男, 正高级工程师, 主要从事公路及桥梁相关研究。E-mail: 674734927@qq.com

    通讯作者:

    姚文敏(1991-), 男, 副教授, 主要从事滑坡地质灾害演化及防控研究。E-mail: wmyao@zzu.edu.cn

  • 中图分类号: P642.22

Physical model tests on the interaction of h-type stabilizing piles and landslides in bedrock with upper hard and lower weak strata

  • 摘要:

    组合式抗滑桩是加固大型滑坡的有效防护措施, 但上硬下软等复合地层中h型抗滑桩的加固机理仍有待深入研究。基于一套自主研发的上硬下软地层滑坡-h型抗滑桩物理模型试验装置, 综合应力应变监测、激光测距仪、高速相机与粒子图像测速(PIV)技术研究了上硬下软地层滑坡中h型桩的位移、内力响应规律与滑体变形破坏特征, 揭示了上硬下软地层条件下h型桩与滑坡相互作用机理。研究结果表明, 在坡顶荷载逐渐增加的条件下, h型桩加固的上硬下软地层滑坡的演化阶段可划分为蠕变阶段、匀速变形阶段、加速变形阶段和破坏阶段4个阶段。受连系梁影响, 前排桩与后排桩桩顶位移较小, 应变最大值出现在靠近滑面深度处; 后排桩弯矩呈"S"型分布, 前排桩弯矩呈三角形分布, 负弯矩最大值位于连系梁下方20 cm处。随着硬岩体积分数(φβ)增加, 桩顶位移逐渐减小, 前、后排桩最大弯矩值也逐渐减小, 但硬岩体积分数超过60%后最大弯矩值变化幅度较小。当φβ=20%和40%时, 后排桩土压力总体呈抛物线形式; 当φβ=60%和80%时, 土压力总体呈反"S"型, 且滑面附近出现第二个土压力峰值; 前排桩土压力分布形式均为抛物线型。试验结果可为组合式抗滑桩加固机理研究和设计提供理论支撑。

     

  • 图 1  h型桩-滑坡系统示意图

    Figure 1.  Diagram of an h-type stabilizing pile-landslide system

    图 2  监测系统布置示意图

    FF.前排桩前侧;FB.前排桩后侧;BF.后排桩前侧;BB.后排桩后侧

    Figure 2.  Layout of the monitoring system

    图 3  物理模型试验工况示意图(φB为硬岩体积分数, 下同)

    Figure 3.  Illustrations of testing schemes

    图 4  滑体在不同时刻(5, 15, 25, 35, 45, 55 min)变形速度云图

    Figure 4.  Velocity contours of the sliding mass at different moments (5, 15, 25, 35, 45, 55 min)

    图 5  滑体不同时刻(25, 45, 55 min)试验变形图

    Figure 5.  Photos of the sliding mass at different moments (25, 45, 55 min)

    图 6  h型桩应变与加载时间关系曲线

    Figure 6.  Correlation of pile strain of h-type stabilizing pile and loading time

    图 7  不同加载时刻前、后排桩桩身弯矩分布图

    Figure 7.  Distribution of pile bending moments of the front and rear piles at different loading moments

    图 8  不同加载时刻前、后排桩桩后土压力分布

    Figure 8.  Distribution of the soil pressure distribution behind the front and rear piles at different loading moments

    图 9  不同硬岩体积分数(φB)工况下桩顶位移变化曲线

    Figure 9.  Displacement of the pile top with varying φB

    图 10  桩顶位移与硬岩体积分数关系拟合曲线

    Figure 10.  Fitting curve for pile top displacement versus the volume content of the hard stratum

    图 11  25 min时不同工况下前、后排桩桩身弯矩分布

    Figure 11.  Distribution of pile bending moments of the front and rear piles with varying φB at 25 min

    图 12  25 min时不同工况下前、后排桩桩后土压力分布

    Figure 12.  Distribution of the soil pressure distribution behind piles of the front and rear piles with varying φB at 25 min

    表  1  物理模型试验材料相关参数

    Table  1.   Geotechnical parameters for model testing materials

    材料名称 密度ρ/(g·cm-3) 弹性模量
    E/GPa
    黏聚力
    с/kPa
    内摩擦角
    φ/(°)
    滑体 1.93 0.024 11.1 22.7
    硬岩 2.07 4.35 105.0 28.0
    软岩 1.99 2.08 45.5 19.3
    抗滑桩 0.95 1.03
    下载: 导出CSV

    表  2  后、前排桩最大弯矩比

    Table  2.   Ratio of the maximum bending moment of the rear pile to the front pile

    时间/min 后、前排桩最大正弯矩比/% 后、前排桩最大负弯矩比/%
    5 61.16 93.73
    15 69.89 109.87
    25 77.31 107.98
    35 84.12 89.39
    45 86.26 82.35
    55 85.56 76.46
    下载: 导出CSV

    表  3  25 min时不同工况前、后排桩桩身最大弯矩

    Table  3.   List of maximum bending moments of the front and rear piles for different working conditions at 25 min

    φB/% 后排桩最大弯矩/(N·m) 前排桩最大弯矩/(N·m)
    20 0.283 0.349
    40 0.234 0.263
    60 0.161 0.103
    80 0.168 0.164
    100 0.163 0.147
    下载: 导出CSV
  • [1] 刘伟. 我国地质灾害调查统计与分析[J]. 采矿技术, 2021, 21(5): 100-103. doi: 10.3969/j.issn.1671-2900.2021.05.029

    Liu W. Statistics and analysis of geological hazard surveys in China[J]. Mining Technology, 2021, 21(5): 100-103(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2900.2021.05.029
    [2] Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations, 1975, 15(4): 43-59. doi: 10.3208/sandf1972.15.4_43
    [3] 常强. 双排桩治理边坡的数值模拟研究[J]. 黑龙江水利科技, 2022, 50(4): 37-39, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ202204011.htm

    Chang Q. Numerical simulation of slope treatment by double row piles[J]. Heilongjiang Water Science and Technology, 2022, 50(4): 37-39, 179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ202204011.htm
    [4] 李云凤. 非极限状态双排桩支护结构内力变形情况分析[J]. 兰州工业学院学报, 2022, 29(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202005.htm

    Li Y F. Analysis of internal force deformation of non-limit state double row pile retaining structure[J]. Journal of Lanzhou Institute of Technology, 2022, 29(2): 25-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202005.htm
    [5] 闫玉平, 肖世国. 双排抗滑桩后侧推力分布物理模型试验[J]. 中国地质灾害与防治学报, 2022, 33(2): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202010.htm

    Yan Y P, Xiao S G. Physical model test on landslide thrust distribution on double-row stabilizing piles[J]. Chinese Journal of Geological Hazards and Prevention, 2022, 33(2): 79-87(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202010.htm
    [6] 张建文, 付正道. 双排桩加固滑坡桥基模型试验与数值模拟研究[J]. 高速铁路技术, 2019, 10(3): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201903007.htm

    Zhang J W, Fu Z D. Model test and numerical simulation of bridge foundation with front and rear anti-slide piles in landslide section[J]. High-speed Railway Technology, 2019, 10(3): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201903007.htm
    [7] 王秀丽, 于光明, 陈美合. 边坡品字型抗滑桩加固效果监测分析[J]. 兰州理工大学学报, 2016, 42(3): 121-127. doi: 10.3969/j.issn.1673-5196.2016.03.025

    Wang X L, Yu G M, Chen M H. Monitoring and analysis of reinforcement effect of slope with pyramid-disposed anti-slide piles[J]. Journal of Lanzhou University of Technology, 2016, 42(3): 121-127(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5196.2016.03.025
    [8] 金兆鑫, 袁维红, 胡建琴, 等. 品字型抗滑桩工作性能的影响因素及优化设计[J]. 兰州石化职业技术学院学报, 2017, 17(3): 36-39. doi: 10.3969/j.issn.1671-4067.2017.03.012

    Jin Z X, Yuan W H, Hu J Q, et al. Influential factors and optimizing design for triangle anti slide piles working performance[J]. Journal of Lanzhou Institute of Petrochemical Technology, 2017, 17(3): 36-39(in Chinese with English abstract). doi: 10.3969/j.issn.1671-4067.2017.03.012
    [9] 任永忠, 朱彦鹏. "品"字型抗滑桩有限元计算方法及工程应用[J]. 工程勘察, 2015, 43(4): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm

    Ren Y Z, Zhu Y P. Finite element calculation method and engineering application of the three piles of facing each other[J]. Engineering Surveys, 2015, 43(4): 32-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
    [10] Wang Z H, Zhou J. Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects[J]. Journal of Zhejiang University: Science A(Applied Physics & Engineering), 2011, 12(10): 758-770.
    [11] 于航, 邢皓枫. h型抗滑桩结构内力及土压力分布研究[J]. 低温建筑技术, 2020, 42(5): 96-100. doi: 10.13905/j.cnki.dwjz.2020.05.024

    Yu H, Xing H F. Internal force and earth pressure distribution of h-type anti-slide pile structure[J]. Cryogenic Building Technology, 2020, 42(5): 96-100(in Chinese with English abstract). doi: 10.13905/j.cnki.dwjz.2020.05.024
    [12] 王羽, 赵波. h型抗滑桩结构机理与工程数值分析研究[J]. 公路工程, 2015, 40(6): 5-9. doi: 10.3969/j.issn.1674-0610.2015.06.002

    Wang Y, Zhao B. The structural mechanism and numerical simulation of h-type anti-sliding pile[J]. Road Works, 2015, 40(6): 5-9(in Chinese with English abstract). doi: 10.3969/j.issn.1674-0610.2015.06.002
    [13] 王继晟, 熊传祥. h型抗滑桩工作性状有限元分析[J]. 土工基础, 2014, 28(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201401017.htm

    Wang J S, Xiong C X. Finite element analysis of h-type piles for landslide mitigations[J]. Geotechnical Foundations, 2014, 28(1): 53-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201401017.htm
    [14] Liu X R, Kou M M, Feng H, et al. Experimental and numerical studies on the deformation response and retaining mechanism of h-type anti-sliding piles in clay landslide[J]. Environmental Earth Sciences, 2018, 77: 163. doi: 10.1007/s12665-018-7360-3
    [15] Ding Y, Wang P, Yu S. A new method for deformation monitoring on H-pile in SMW based on BOTDA[J]. Measurement, 2015, 70: 156-168. doi: 10.1016/j.measurement.2015.02.027
    [16] 欧孝夺, 唐迎春, 崔伟, 等. h型抗滑桩模型试验及数值模拟[J]. 岩石力学与工程学报, 2012, 31(9): 1936-1943. doi: 10.3969/j.issn.1000-6915.2012.09.026

    Ou X D, Tang Y C, Cui W, et al. Model test and numerical simulation of h-shaped anti-sliding pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1936-1943(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.09.026
    [17] Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002
    [18] Conte E, Troncone A, Vena M. Nonlinear three-dimensional analysis of reinforced concrete piles subjected to horizontal loading[J]. Computers and Geotechnics, 2013, 49: 123-133. doi: 10.1016/j.compgeo.2012.10.013
    [19] 姚文敏. 基于水致岩体劣化的三峡库区侏罗系地层水库滑坡抗滑桩嵌固机理及其优化研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Yao W M. Embedded mechanism and optimization of stabilizing piles for reservoir landslides in Jurassic strata of Three Gorges Reservoir region based upon water induced deterioration of rock mass[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [20] 雍睿. 三峡库区侏罗系地层推移式滑坡-抗滑桩相互作用研究[D]. 武汉: 中国地质大学(武汉), 2014.

    Yong R. Interaction between thrust load caused landslideand antislide pile in Jurassic strata in Three Gorges Reservoir region[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
    [21] 韩振雷. 基于软硬相间地层条件下抗滑桩受力特性研究[D]. 重庆: 重庆交通大学, 2020.

    Han Z L. Study on the interaction between anti-slide pile and embedded rock mass under the condition of soft and hard interphase strata[D]. Chongqing: Chongqing Jiaotong University, 2020(in Chinese with English abstract).
    [22] 王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413

    Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0413
    [23] Liu D M, Xu W L, Zhao Y Z. Experimental study of the flow field of a high head model pump turbine based on PIV technique[J]. Journal of Hydrodynamics, 2021, 33(5): 1045-1055. doi: 10.1007/s42241-021-0092-y
    [24] Meng W, Xu L, Zhenya L, et al. Application of PIV technique in model test of frost heave of unsaturated soil[J]. Journal of Cold Regions Engineering, 2020, 34(3): 04020014-04020014. doi: 10.1061/(ASCE)CR.1943-5495.0000216
    [25] 杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069

    Yang D F, Hu X L, Xu C, et al. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
    [26] 中国地质灾害防治工程行业协会. 抗滑桩治理工程设计规范(试行): T/CAGHP003-2018[S]. 武汉: 中国地质大学出版社, 2018.

    Chinese Association of Geological Hazard Prevention. Design specification for anti-sliding piles of improvement engineering: T/CAGHP003-2019[S]. Wuhan: China University of Geosciences Press, 2018(in Chinese).
    [27] Xiong S, Li C D, Yao W M, et al. Physical model tests and numerical modeling of stabilizing mechanism of portal double-row piles in landslides with interbedded weak and hard bedrock[J]. Bulletin of Engineering Geology and the Environment, 2022, 81: 101.
    [28] 赵海南. h型抗滑桩受力特性的试验研究[D]. 西安: 长安大学, 2020.

    Zhao H N. Experimental study on the stress characteristics of h-type anti-slide pile[D]. Xi'an: Chang'an University, 2020(in Chinese with English abstract).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  498
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04

目录

    /

    返回文章
    返回