留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新铺下二台滑坡变形机制及中长期预报模型

武生辉 仝德富 苏爱军 郭兵 王健 谭磊

武生辉, 仝德富, 苏爱军, 郭兵, 王健, 谭磊. 新铺下二台滑坡变形机制及中长期预报模型[J]. 地质科技通报, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235
引用本文: 武生辉, 仝德富, 苏爱军, 郭兵, 王健, 谭磊. 新铺下二台滑坡变形机制及中长期预报模型[J]. 地质科技通报, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235
Wu Shenghui, Tong Defu, Su Aijun, Guo Bing, Wang Jian, Tan Lei. Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235
Citation: Wu Shenghui, Tong Defu, Su Aijun, Guo Bing, Wang Jian, Tan Lei. Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 35-44. doi: 10.19509/j.cnki.dzkq.2022.0235

新铺下二台滑坡变形机制及中长期预报模型

doi: 10.19509/j.cnki.dzkq.2022.0235
基金项目: 

中央高校基本科研业务专项资金资助项目 CUG1910491T07

重庆地质灾害研究中心项目 20C0023

详细信息
    作者简介:

    武生辉(1997-), 男, 现正攻读土木工程专业硕士学位, 主要从事滑坡稳定性及其机理的研究。E-mail: 2322968171@qq.com

    通讯作者:

    苏爱军(1962-), 男, 教授, 主要从事地质灾害防治的研究及教学工作。E-mail: aijun318@vip.sina.com

  • 中图分类号: P642.22

Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide

  • 摘要:

    以奉节新铺下二台滑坡为例, 基于GPS位移监测数据、裂缝数据、降雨量及库水位等多源数据, 总结分析了大型古滑坡的复活规律, 引入滑坡中长期预报模型, 实现了以季度或月份为时间单位的跨水文年滑坡位移预测, 并通过岩土体蠕变压缩模型, 验证了推移式滑坡后缘裂缝形成机理。结果表明: ①降雨是下二台滑坡变形的主导因素, 滑坡变形使得滑体产生裂缝并成为降雨入渗通道, 加剧了岩体破碎与软弱层软化, 降低了滑坡稳定性, 集中持续降雨可使滑坡失稳破坏; ②通过模型预测值与地表监测数据的比较, 将年降雨量作为滑坡中长期预报模型中的主控因素具有实际可操作性且有助于提高滑坡中长预报精度; ③推移式滑坡后缘裂缝由滑坡推移式位移和岩土体压缩形成, 引入蠕变压缩模型计算的裂缝宽度并和监测数据的比较说明, 蠕变压缩模型非常适合该类边坡, 同时应用岩土体蠕变压缩模型反推得到岩土体平均变形模量, 判断岩体破碎程度, 可以为滑坡稳定性分析及后续工程治理提供参考。

     

  • 图 1  下二台滑坡平面图

    Q4ml.第四系人工堆积层; Q4dl.第四系坡积层; Q4al+pl.第四系冲洪积层; Q4del.第四系滑坡堆积层; J1z.下侏罗统珍珠冲组; T3xj.上三叠统须家河组

    Figure 1.  Plan of Xia′ertai landslides

    图 2  下二台滑坡典型剖面1-1′图

    Figure 2.  Typical profile 1-1′ of Xia′ertai landslide

    图 3  下二台滑坡地表变形特征(f中a~e代表上图a~e在f中的位置)

    Figure 3.  Surface deformation characteristics of Xia′ertai landslide

    图 4  下二台滑坡裂缝宽度与降雨量关系

    Figure 4.  Relationship of fracture width and rainfall of Xia′ertai landslide

    图 5  下二台滑坡一级滑体监测点位移曲线

    Figure 5.  Displacement curve of the monitoring point of the first grade slide of Xia′ertai landslide

    图 6  下二台滑坡二级滑体监测点位移曲线

    Figure 6.  Displacement curve of the monitoring point of the second grade slide of Xia′ertai landslide

    图 7  2015-2021年下二台滑坡平均位移速率曲线

    Figure 7.  Average displacement rate curve of Xia′ertai landslide in 2015-2021

    图 8  GPS07日位移速率曲线与降雨量及库水位变动速率关系

    Figure 8.  Relationship of the daily displacement rate curve with precipitation and reservoir water level variation rate at GPS07

    图 9  下二台滑坡一级滑体SU-4模型下拟合值(预测值)与观测值对比

    Figure 9.  Comparison between the predicted value and measured value of the first grade slide, Xia′ertai landslide under SU-4 model

    图 10  岩土体压缩计算模型

    h为岩体垂向厚度;B为裂缝宽度;β为滑面倾角;σ为压缩应力;L为滑体长度;dx为单宽的微分单位;l为滑坡的某分条长度;dl为滑体宽度

    Figure 10.  Calculation model diagram of rock and soil compression

    表  1  下二台滑坡累积位移与库水位相关系数

    Table  1.   Correlation coefficient between the cumulative displacement and reservoir water level of the Xia′ertai landslide

    阶段 月份 累计位移与库水位相关系数r
    GPS07 GPS01
    缓慢下降阶段 12 -0.133 0 -0.077 2
    1 0.303 4 0.143 7
    2 0.129 5 0.092 5
    3 -0.095 0 -0.158 5
    4 -0.349 5 -0.197 5
    快速下降阶段 5 0.218 4 0.050 6
    6 0.396 4 0.117 7
    低水位波动阶段 7 0.195 8 0.107 4
    8 0.182 4 0.065 2
    快速上升阶段 9 0.009 9 0.132 6
    10 0.144 0 -0.165 7
    稳定阶段 11 0.161 5 0.226 7
    下载: 导出CSV

    表  2  下二台滑坡一级滑体GPS05样本数据

    Table  2.   Sample data at GPS05 of the first grade slide, Xia′ertai landslide

    年份 累计降雨强度系数 观测位移/mm 预测位移/mm
    2017 3.07 1 005 1 024
    2018 3.56 1 175 1 142
    2019 4.26 1 297 1 310
    2020 5.36 1 587 1 587
    2021 6.39 1 903 1 858
    下载: 导出CSV

    表  3  GPS13监测点至LF38裂缝间岩体分段压缩量计算表

    Table  3.   Rock section compression calculation table between GPS13 and LF38

    分段i 平均垂直厚度hi/m 分段长xi/m 容重γ/(kN·m-3) 黏聚力C/MPa 内摩擦角φ/(°) 岩层倾角β/(°) 弹性模量E/MPa 分段压缩量Bi/mm
    1 5.12 8.0 26 4.8 13.35 14 8.77×104 0.04
    2 8.03 8.0 26 4.8 13.35 14 8.77×104 0.10
    3 10.95 8.0 26 4.8 13.35 14 8.77×104 0.20
    4 13.81 8.0 26 4.8 13.35 14 8.77×104 0.32
    5 16.54 8.0 26 4.8 13.35 14 8.77×104 0.47
    6 19.50 8.0 26 4.8 13.35 14 8.77×104 0.65
    7 22.78 8.0 26 4.8 13.35 14 8.77×104 0.87
    8 25.50 8.0 26 4.8 13.35 14 8.77×104 1.11
    9 27.36 8.4 26 4.8 13.35 14 8.77×104 1.38
    10 27.52 4.0 26 4.8 13.35 14 8.77×104 1.52
    累计压缩量 6.67
    下载: 导出CSV
  • [1] 王忠福, 李冬冬, 万天同. 基于滑坡变形分区的锁固型滑坡稳定性分析研究[J]. 华北水利水电大学学报: 自然科学版, 2018, 39(6): 35-40. doi: 10.3969/j.issn.1002-5634.2018.06.007

    Wang Z F, Li D D, Wan T T. Stability analysis of landslide based on landslide deformation partition with retaining wall[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(6): 35-40(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5634.2018.06.007
    [2] Tang H M, Wasowski J, Juang C H. Geohazards in the Three Gorges Reservoir area, China: Lessons learned from decades of research[J]. Engineering Geology, 2019, 261(10): 5267.
    [3] Gong W P, Juang C H, Wasowski J. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China: Engineering geologist's perspective[J]. Engineering Geology, 2021, 285(10): 6051.
    [4] Petley D N. Global patterns of loss of life from landslides[J]. Geology, 2012, 40(10): 927-930. doi: 10.1130/G33217.1
    [5] Lin Q, Wang Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372. doi: 10.1007/s10346-018-1037-6
    [6] Tong D F, Su A J, Tan F, et al. Genetic mechanism of water-rich landslide considering antecedent rain fails: A case study of Pingyikou landslide in Three Gorges Reservoir area[J/OL]. Journal of Earth Science: 1-27[2022-11-11]. http://kns.cnki.net/kcms/detail/42.1788.P.20220805.1445.006.html.
    [7] 陈洪凯, 唐红梅, 艾南山. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响[J]. 地理研究, 1997, 16(4): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htm

    Chen H K, Tang H M, Ai N S. Neotectonic strese field and its effects on the dominant sliding direction of landslides in the Three Gorges Reservoir region[J]. Geographical Research, 1997, 16(4): 16-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htm
    [8] 冯振, 殷跃平, 李滨, 等. 重庆武隆鸡尾山滑坡视向滑动机制分析[J]. 岩土力学, 2012, 33(9): 2704-2712. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htm

    Feng Z, Yin Y P, Li B, et al. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 2012, 33(9): 2704-2712(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htm
    [9] 张帆, 王孔伟, 罗先启, 等. 长江三峡库区构造特征与滑坡分布关系[J]. 地质学报, 2007, 81(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htm

    Zhang F, Wang K W, Luo X Q, et al. Relationship between landslides and structural featurein Three Gorges Reservoir[J]. Acta Geologica Sinica, 2007, 81(1): 38-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htm
    [10] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [11] 唐辉明, 鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm

    Tang H M, Lu S. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 26(1): 129-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm
    [12] 谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm

    Tan L Y, Hang R Q, Pei X J. Deformation characteristics and inducing mechanisms of a super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm
    [13] 仝德富, 谭飞, 苏爱军, 等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报, 2021, 40(4): 162-170. doi: 10.19509/j.cnki.dzkq.2021.0432

    Tong D F, Tan F, Su A J, et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-source data[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 162-170 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0432
    [14] 张永双, 吴瑞安, 任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报, 2021, 40(4): 777-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htm

    Zhang Y S, Wu R A, Ren S S. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 777-789(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htm
    [15] 李晓, 张年学, 盛祝平, 等. 武隆鸡尾山滑坡发生机制与裂缝成因分析[J]. 岩石力学与工程学报, 2020, 39(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htm

    Li X, Zhang N X, Sheng Z P, et al. Sliding mechanisms and fracture genesis of Jiweishan landslide in Wulong[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htm
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  616
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13

目录

    /

    返回文章
    返回