留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断层破碎带条件下组合式圆截面抗滑桩加固边坡效果研究

罗晓娟 寇桓嘉 祝国强 宋成彬 苗宇芃

罗晓娟, 寇桓嘉, 祝国强, 宋成彬, 苗宇芃. 断层破碎带条件下组合式圆截面抗滑桩加固边坡效果研究[J]. 地质科技通报, 2022, 41(6): 253-261. doi: 10.19509/j.cnki.dzkq.2022.0239
引用本文: 罗晓娟, 寇桓嘉, 祝国强, 宋成彬, 苗宇芃. 断层破碎带条件下组合式圆截面抗滑桩加固边坡效果研究[J]. 地质科技通报, 2022, 41(6): 253-261. doi: 10.19509/j.cnki.dzkq.2022.0239
Luo Xiaojuan, Kou Huanjia, Zhu Guoqiang, Song Chengbin, Miao Yupeng. Effect of combined anti-slide piles with circular section to reinforce the slope containing the fault crushed zone[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 253-261. doi: 10.19509/j.cnki.dzkq.2022.0239
Citation: Luo Xiaojuan, Kou Huanjia, Zhu Guoqiang, Song Chengbin, Miao Yupeng. Effect of combined anti-slide piles with circular section to reinforce the slope containing the fault crushed zone[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 253-261. doi: 10.19509/j.cnki.dzkq.2022.0239

断层破碎带条件下组合式圆截面抗滑桩加固边坡效果研究

doi: 10.19509/j.cnki.dzkq.2022.0239
基金项目: 

国家自然科学基金重大项目 42090054

浙江省交通运输厅科技计划项目 2021023

中国博士后科学基金资助项目 2021M703003

详细信息
    作者简介:

    罗晓娟(1982-), 女, 高级工程师, 主要从事地质灾害相关研究工作。E-mail: 253885502@qq.com

    通讯作者:

    祝国强(1989-), 男, 副研究员, 主要从事岩土和地质工程灾害方面的研究工作。E-mail: zhuguoqiang@cug.edu.cn

  • 中图分类号: U416.1+4

Effect of combined anti-slide piles with circular section to reinforce the slope containing the fault crushed zone

  • 摘要:

    随着我国公路建设不断向山区深入, 在地质构造复杂区公路边坡遇到断层破碎带的情况日渐增多, 亟需开展阻滑能力强的抗滑桩结构加固边坡研究。传统的人工挖孔桩施工模式存在高风险、低效率等缺点, 而组合式圆截面抗滑桩具有施工效率高、安全便捷等特点, 为此, 探究其对含断层破碎带边坡的加固效果具有现实意义。采用自主设计的边坡物理试验系统, 设计了5种不同破碎带厚度与组合式圆截面抗滑桩组合的物理模型, 采用坡顶逐级加载的方式模拟加载, 监测桩身应变、桩顶位移和桩后土压力, 采用高速相机捕捉滑体变形破坏图像, 并使用粒子图像测速(PIV)技术对图像进行处理。研究结果表明: 组合式圆截面抗滑桩通过限制桩后滑体水平位移, 并将滑体限制在前、后排桩间来达到加固边坡的效果; 滑体演化分为变形压密、加速变形和破坏滑移3个阶段; 前、后排桩桩后土压力比值介于1/3~1/2之间; 随断层破碎带厚度增加, 滑体水平滑移速率增大, 组合式圆截面抗滑桩的桩顶位移增大, 桩身最大正弯矩减小。模型试验与数值模拟计算的弯矩及桩顶位移较为吻合, 研究成果可为边坡工程组合式圆截面抗滑桩设计提供一定借鉴与参考。

     

  • 图 1  模型试验系统及抗滑桩布置示意图(单位: mm)

    Figure 1.  Model test system and anti-slide pile layout diagram

    图 2  工况设计图(单位: mm)

    Figure 2.  Testing schemes of the design diagram

    图 3  工况一变形破坏(a~c)与滑体水平速率云图(e~g)

    Figure 3.  Figure of the deformation failure (a-c) and horizontal velocity (e-g) of the sliding body in working condition 1

    图 4  工况二变形破坏(a~c)与滑体水平速率云图(e~g)

    Figure 4.  Figure of the deformation failure (a-c) and horizontal velocity (e-g) of the sliding body in working condition 2

    图 5  工况一至工况五滑体水平速率

    a.工况一与工况二; b.工况三至工况五

    Figure 5.  Horizontal velocity of sliding body from working condition 1 to working condition 5

    图 6  工况二前、后排桩桩身弯矩

    Figure 6.  Bending moment of the front and rear piles under working condition 2

    图 7  工况四前、后排桩桩身弯矩

    Figure 7.  Bending moment of the front and rear piles under working condition 4

    图 8  工况四边坡破坏特征

    Figure 8.  Slope failure characteristics of working condition 4

    图 9  桩顶位移变化与拟合曲线

    Figure 9.  Pile top displacement variation and fitting curve

    图 10  工况四前(a)、后(b)排桩桩后土压力分布图

    Figure 10.  Soil pressure distribution diagram behind the piles of the front and rear piles under working condition 4

    图 11  模型试验与数值模拟的桩身弯矩对比图

    Figure 11.  Pile bending moment comparison diagram between the model test and numerical simulation

    图 12  数值模拟桩身水平位移图

    Figure 12.  Numerical simulation of the pile horizontal displacement diagram

    表  1  模型试验材料物理力学参数

    Table  1.   Physical and mechanical parameters of the model test material

    材料名称 密度ρ/(g·cm-3) 弹性模量
    E/GPa
    泊松比
    υ
    黏聚力
    c/kPa
    内摩擦角
    φ/(°)
    抗滑桩 1.14 3.000 0.28
    断层破碎带 1.97 0.040 0.30 90.0 25.0
    基岩 2.07 4.350 0.28 105.0 28.0
    滑体土 1.93 0.024 0.31 11.1 22.7
    下载: 导出CSV
  • [1] 覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技通报, 2021, 40(4): 187-195. doi: 10.19509/j.cnki.dzkq.2021.0412

    Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0412
    [2] 苏爱军, 甘诏文, 宋洪斌, 等. 基于"三段法"的锚拉桩桩身内力计算方法与应用[J]. 地质科技通报, 2020, 39(5): 8-16. doi: 10.19509/j.cnki.dzkq.2020.0502

    Su A J, Gan Z W, Song H B, et al. Calculation method and application of internal force of anchor pile based on "three-stage method"[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 8-16 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0502
    [3] Won J, You K, Jeong S, et al. Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics, 2005, 32(4): 304-315. doi: 10.1016/j.compgeo.2005.02.006
    [4] Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils and Foundations, 2000, 40(1): 73-84. doi: 10.3208/sandf.40.73
    [5] 魏少伟, 隋颜阳, 杨建民. 圆形与矩形截面抗滑桩抗滑性能的模型试验研究[J]. 岩土力学, 2019, 40(3): 951-961. doi: 10.16285/j.rsm.2017.1807

    Wei S W, Sui Y Y, Yang J M. Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles[J]. Rock and Soil Mechanics, 2019, 40(3): 951-961(in Chinese with English abstract). doi: 10.16285/j.rsm.2017.1807
    [6] 李恒杨, 戴自航, 卢才金. 圆形与矩形截面门架式抗滑桩性能的数值分析对比[J]. 土工基础, 2016, 30(3): 328-332. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201603013.htm

    Li H Y, Dai Z H, Lu C J. Numerical comparisons of H shaped anti-landslide caissons with circular and rectangular section[J]. Soil Engineering and Foundation, 2016, 30(3): 328-332(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201603013.htm
    [7] 任永忠, 朱彦鹏, 李海军. 考虑桩土相互作用的"品"字型抗滑桩计算方法[J]. 四川大学学报: 工程科学版, 2015, 47(3): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201503005.htm

    Ren Y Z, Zhu Y P, Li H J. Calculation method of the three piles of facing each other in consideration of the pile-soil interaction[J]. Journal of Sichuan University: Engineering Science Edition, 2015, 47(3): 29-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201503005.htm
    [8] 任永忠, 朱彦鹏. "品"字型抗滑桩有限元计算方法及工程应用[J]. 工程勘察, 2015, 43(4): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm

    Ren Y Z, Zhu Y P. Finite element calculation method and engineering application of the three piles of facing each other[J]. Geotechnical Investigation & Surveying, 2015, 43(4): 32-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
    [9] 任永忠, 朱彦鹏, 王秀丽, 等. "品"字型抗滑桩在舟曲锁儿头滑坡中的应用[J]. 四川建筑科学研究, 2014, 40(3): 113-116. doi: 10.3969/j.issn.1008-1933.2014.03.030

    Ren Y Z, Zhu Y P, Wang X L, et al. Application of the three piles of facing each other anti-sliding piles in Suoertou landslide in Zhouqu[J]. Sichuan Building Science, 2014, 40(3): 113-116(in Chinese with English abstract). doi: 10.3969/j.issn.1008-1933.2014.03.030
    [10] 张伟杰. 隧道工程富水断层破碎带注浆加固机理及应用研究[D]. 济南: 山东大学, 2014.

    Zhang W J. Mechanism of grouting reinforcement of water-rich fault fractured zone and its application in tunnel engineering[D]. Jinan: Shangdong University, 2014(in Chinese with English abstract).
    [11] Wang Y, Jing H, Su H, et al. Effect of a fault fracture zone on the stability of tunnel-surrounding rock[J]. International Journal of Geomechanics, 2017, 17(6): 04016135. doi: 10.1061/(ASCE)GM.1943-5622.0000837
    [12] Jeon S, Kim J, Seo Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock: A scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663. doi: 10.1016/j.ijrmms.2004.03.115
    [13] Liao Z, Lu H, Carpenter B M. et al. Analysis of faut damage zones by using 3D seismic coherence in Anadarko Basin, Oklahoma[J]. AAPG Bulletin, 2019, 103(8): 1771-1785. doi: 10.1306/1219181413417207
    [14] 尹光志, 李小双, 魏作安, 等. 边坡和采场围岩变形破裂响应特征的相似模拟试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2913-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1043.htm

    Yin G Z, Li X S, Wei Z A, et al. Similar simulation study of deformation and failure response features of slopr and stope rocks[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(S1): 2913-2923(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1043.htm
    [15] 刘宏力, 刘品, 吁燃. 断层破碎带对公路边坡工程的影响分析[J]. 公路交通技术, 2017, 33(2): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201702005.htm

    Liu H L, Liu P, Yu R. Analysis on the influence of fault fracture zone on expressway slope project[J]. Technology of Highway and Transport, 2017, 33(2): 19-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201702005.htm
    [16] 徐则民. 基于失稳机制的岩质路基边坡加固方案优化[J]. 中国公路学报, 2008, 21(6): 7-13. doi: 10.3321/j.issn:1001-7372.2008.06.002

    Xu Z M. Optimization of reinforced project of rock slopes based on instability mechanisms[J]. China Journal of Highway and Transport, 2008, 21(6): 7-13(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7372.2008.06.002
    [17] 刘泉声, 张伟, 卢兴利, 等. 断层破碎带大断面巷道的安全监控与稳定性分析[J]. 岩石力学与工程学报, 2010, 29(10): 1954-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010004.htm

    Liu Q S, Zhang W, Lu X L, et al. Safety monitoring and stability analysis of large-scale roadway in fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1954-1962(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010004.htm
    [18] 景彦君, 张以晨, 周志广. 国内外对活断层的研究综述[J]. 吉林地质, 2009, 28(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200902003.htm

    Jing Y J, Zhang Y C, Zhou Z G. Research of active faults at home and abroad[J]. Jilin Geology, 2009, 28(2): 1-3(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200902003.htm
    [19] 唐荣昌, 钱洪. 活断层的地质研究及其在工程安全性评价的意义[J]. 四川地震, 1994(1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ401.028.htm

    Tang R C, Qian H. Geological study of active fault and its significance in engineering safety evaluation[J]. Earthquake Research in Sichuan, 1994(1): 69-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ401.028.htm
    [20] 本刊编辑部. 广东深圳光明新区渣土受纳场"12·20"特别重大滑坡事故调查报告[J]. 中国应急管理, 2016(7): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201607043.htm

    The Editorial Department of China Emergency Management. Investigation report of "12·20" landslide accident in Guangming New District, Shenzhen, Guangdong[J]. China Emergency Management, 2016(7): 77-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201607043.htm
    [21] 杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069

    Yang D F, Hu X L, Xu C, et al. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
    [22] 王凯, 李术才, 张庆松, 等. 流-固耦合模型试验用的新型相似材料研制及应用[J]. 岩土力学, 2016, 37(9): 2521-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609012.htm

    Wang K, Li S C, Zhang Q S, et al. Development and application of new similar materials of surrounding rock for a fluid-solid coupling model test[J]. Rock and Soil Mechanics, 2016, 37(9): 2521-2533(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609012.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  677
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11

目录

    /

    返回文章
    返回