留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑方台地区马兰黄土渗透特性及结构损伤试验研究

李泽坤 马鹏辉 彭建兵 杨炬

李泽坤, 马鹏辉, 彭建兵, 杨炬. 黑方台地区马兰黄土渗透特性及结构损伤试验研究[J]. 地质科技通报, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251
引用本文: 李泽坤, 马鹏辉, 彭建兵, 杨炬. 黑方台地区马兰黄土渗透特性及结构损伤试验研究[J]. 地质科技通报, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251
Li Zekun, Ma Penghui, Peng Jianbing, Yang Ju. Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251
Citation: Li Zekun, Ma Penghui, Peng Jianbing, Yang Ju. Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251

黑方台地区马兰黄土渗透特性及结构损伤试验研究

doi: 10.19509/j.cnki.dzkq.2022.0251
基金项目: 

国家自然科学基金项目 42090053

国家自然科学基金项目 41790441

国家自然科学基金项目 42041006

国家自然科学基金项目 4210071970

中央高校基础研究基金 300102262907

详细信息
    作者简介:

    李泽坤(1999-), 男, 现正攻读地质资源与地质工程专业博士学位, 主要从事黄土灾害地质与工程地质方面的科研工作。E-mail: 1120153298@qq.com

    通讯作者:

    马鹏辉(1990-), 男, 讲师, 主要从事黄土灾害链及工程地质方面的教学与科研工作。E-mail: spawnkobe@163.com

  • 中图分类号: TU411

Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area

  • 摘要:

    持续引水灌溉改变了马兰黄土的结构, 降低了土体的抗剪强度, 导致黑方台地区黄土滑坡频繁发生, 严重影响着当地居民生命和财产安全。为了明析马兰黄土的渗透过程, 取黑方台马兰黄土为研究对象, 分别开展核磁共振(NMR)试验及扫描电镜(SEM)试验, 以解释此类黄土在不同初始含水率及不同干密度下的渗透特性及结构损伤微观特征。研究结果表明: 入渗速率与土体初始含水率呈负相关关系, 土体初始含水率越高, 其充水微小孔隙增加速率越慢, 充水中大孔隙增加速率越快; 入渗速率与土体干密度呈负相关关系, 且会率先形成高含水率区域, 土体干密度越大, 其充水微小孔隙增加越慢, 充水中大孔隙增加越快。入渗前后对比发现, 试样初始含水率越高, 微小孔隙增加比例越小, 颗粒间接触方式变化越不明显; 干密度越大的试样不同孔隙体积基本按等量变化, 接触面积明显减少, 形成更多的架空孔隙, 连通性较好, 具有较好的储水能力。入渗后试样原本的致密结构丧失, 颗粒破碎严重, 部分细长状颗粒向似椭圆状颗粒演化, 颗粒间接触方式变为点边接触, 粒间胶结作用遭受损伤破坏, 甚至部分团粒中颗粒分离、脱落, 使得土体强度丧失, 最终导致滑坡发生。研究结果可为黄土滑坡的防治提供依据。

     

  • 图 1  1990-2014年灌溉量与滑坡发生的关系

    Figure 1.  Relationship between irrigation amount and landslide occurrence from 1990 to 2014

    图 2  黑方台黄土滑坡取样点位置图

    Figure 2.  Sample point location map of loess landslide in Heifangtai area

    图 3  试验流程图

    Figure 3.  Flow chart of infiltration test

    图 4  不同初始含水率重塑黄土在入渗下的充水孔隙分布图

    a.初始含水率15%重塑黄土充水孔隙体积分布;b.初始含水率15%重塑黄土不同充水孔隙体积柱状图;c.初始含水率17%重塑黄土充水孔隙体积分布;d.初始含水率17%重塑黄土不同充水孔隙体积柱状图;e.初始含水率19%重塑黄土充水孔隙体积分布;f.初始含水率19%重塑黄土不同充水孔隙体积柱状图

    Figure 4.  Water-filled pores distribution during infiltration in the cases of different initial water contents

    图 5  干密度为1.5 g/cm3的重塑黄土在入渗下的充水孔隙分布图

    a.干密度1.5 g/cm3重塑黄土充水孔隙体积分布; b.干密度1.5 g/cm3重塑黄土不同充水孔隙体积柱状图

    Figure 5.  Water-filled pores distribution during infiltration in the cases of dry density 1.5 g/cm3

    图 6  不同试样入渗过程核磁共振成像分析(1~12为成像次数)

    a.干密度1.36 g/cm3、初始含水率15%入渗成像图;b.干密度1.36 g/cm3、初始含水率17%入渗成像图;c.干密度1.36 g/cm3、初始含水率19%入渗成像图;d.干密度1.5 g/cm3、初始含水率15%入渗成像图

    Figure 6.  NMR analysis of different samples during infiltration

    图 7  渗透前后试样SEM图像

    a.干密度1.36 g/cm3、初始含水率15%,渗透前; b.干密度1.36 g/cm3、初始含水率15%,渗透后; c.干密度1.36 g/cm3、初始含水率19%,渗透前; d.干密度1.36 g/cm3、初始含水率19%,渗透后; e.干密度1.5 g/cm3、初始含水率15%,渗透前; d.干密度1.5 g/cm3、初始含水率15%,渗透后

    Figure 7.  SEM images of samples before and after infiltration

    图 8  试样入渗前后二值化处理效果图

    a.干密度1.36 g/cm3、初始含水率15%,入渗前;b.干密度1.36 g/cm3、初始含水率15%,入渗后;c.干密度1.36 g/cm3、初始含水率19%,入渗前;d.干密度1.36 g/cm3、初始含水率19%,入渗后;e.干密度1.5 g/cm3、初始含水率15%,入渗前;f.干密度1.5 g/cm3、初始含水率15%,入渗后

    Figure 8.  Effect of binarization treatment before and after sample infiltration

    图 9  各试样渗流前后不同孔隙所占比例图

    Figure 9.  Proportion of different pores in each sample before and after seepage

    图 10  渗透前后各试样颗粒丰度

    Figure 10.  Particle abundance of each sample before and after infiltration

    图 11  渗透前后土体结构损伤示意图

    Figure 11.  Schematic diagram of soil structure damage before and after seepage

    表  1  黄土土样的基本物理参数

    Table  1.   Physical parameters of loess samples

    物理参数 干密度ρd/(g·cm-3) 天然含水率
    ω/%
    塑限/% 液限/% 塑性指数 颗粒组成wB/%
    黏粒(< 0.002 mm) 粉粒([0.002, 0.075]mm) 砂粒(>0.075 mm)
    测试值 1.36 7.13 15.7 26.4 10.7 6.18 79.04 14.78
    下载: 导出CSV

    表  2  入渗试验工况

    Table  2.   Infiltration test conditions

    序号 试验条件 干密度ρd/(g·cm-3) 初始含水率
    ω/%
    流量/(mL·min-1)
    N1
    N2
    N3
    不同初始含水率 1.36 15
    17
    19
    0.45
    N4
    N5
    不同干密度 1.36
    1.50
    15 0.45
    下载: 导出CSV
  • [1] 马鹏辉, 彭建兵, 王启耀, 等. 泾阳南塬典型黄土滑坡成因、堆积及运动特征分析[J]. 工程地质学报, 2018, 26(4): 930-938. doi: 10.13544/j.cnki.jeg.2017-380

    Ma P H, Peng J B, Wang Q Y, et al. Formation mechanism, deposits and motion characteristics of the typical loess landslide in south Jingyang platform[J]. Journal of Engineering Geology, 2018, 26(4): 930-938(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2017-380
    [2] 吴玮江, 宿星, 叶伟林, 等. 饱和黄土滑坡形成中的侧压力作用: 以甘肃黑方台为例[J]. 岩土工程学报, 2018, 40(增刊1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1023.htm

    Wu W J, Su X, Ye W L, et al. Lateral pressure in formation of saturated loess landslide: Case study of Heifangtai, Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 135-140(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1023.htm
    [3] 赵纪飞, 黄嘉悦, 侯晓坤, 等. 灌溉诱发的黑方台黄土滑坡泥流机理分析[J]. 灾害学, 2017, 32(4): 60-66. doi: 10.3969/j.issn.1000-811X.2017.04.010

    Zhao J F, Huang J Y, Hou X K, et al. Analysis of a flow-slide in Heifangtai induced by irrigation[J]. Journal of Catastrophology, 2017, 32(4): 60-66(in Chinese with English abstract). doi: 10.3969/j.issn.1000-811X.2017.04.010
    [4] Peng D L, Xu Q, Qi X, et al. Study on early recognition of loess landslides based on field investigation[J]. Geohazards and Environment, 2016, 2(2): 35-52. doi: 10.15273/ijge.2016.02.006
    [5] 任晓虎, 许强, 赵宽耀, 等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报, 2020, 39(2): 130-138. doi: 10.19509/j.cnki.dzkq.2020.0214

    Ren X H, Xu Q, Zhao K Y, et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology, 2020, 39 (2): 130-138(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0214
    [6] 杨波, 李熠, 周伟, 等. 饱和黄土渗透过程变形与渗透系数关系初探[J]. 广西大学学报: 自然科学版, 2015, 39(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201502010.htm

    Yang B, Li Y, Zhou W, et al. Experimental studies on relationship between deformation and hydraulic permeability of loess in process of penetration[J]. Journal of Guangxi University: Natural Science Edition, 2015, 39(2): 325-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201502010.htm
    [7] Haeri S M, Zamani A, Garakani A A. Collapse potential and permeability of undisturbed and remolded loessial soil samples[C]//Anon. 2nd European conference on unsaturated soils. [S. l. ]: [s. n. ], 2012: 325-330.
    [8] 李佳, 高广运, 黄雪峰. 非饱和原状黄土边坡浸水试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 1043-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm

    Li J, Gao G Y, Huang X F. Experimental research on immersion for unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1043-1048(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm
    [9] 刘德仁, 徐硕昌, 肖洋, 等. 浸水入渗条件下压实黄土水-气运移规律试验研究[J]. 岩土力学, 2021, 42(12): 3260-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112006.htm

    Liu D R, Xu S C, Xiao Y, et al. Experimental study on the law of water-air migration in compacted loess under the condition of immersion infiltration[J]. Rock and Soil Mechanics, 2021, 42(12): 3260-3270(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112006.htm
    [10] Wang M, Bai X. Collapse property and microstructure of loess[C]//Anon. Advances in unsaturated soil, seepage and environmental geotechnics. [S. l. ]: ASCE, 2006: 111-118.
    [11] 罗爱忠, 邵生俊, 许萍. 湿载条件下黄土结构性损伤演化特性研究[J]. 西北农林科技大学学报: 自然科学版, 2012, 40(3): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201203035.htm

    Luo A Z, Shao S J, Xu P. Research on structural damage developments of loess under stress and moisture[J]. Journal of Northwest A & F University: Natural Science Edition, 2012, 40(3): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201203035.htm
    [12] 王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm

    Wang T X, Hao Y Z, Wang C, et al. Experimental study on dynamic strength properties of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1242-1251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm
    [13] 谌文武, 刘伟, 王娟, 等. 渗透剪切作用下黄土的力学特征[J]. 工程科学学报, 2018, 40(5): 639-648. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805015.htm

    Chen W W, Liu W, Wang J, et al. Mechanical characteristics of loess under seepage shear[J]. Chinese Journal of Engineering, 2018, 40(5): 639-648(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805015.htm
    [14] 江强强, 刘路路, 焦玉勇, 等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012, 1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm

    Jiang Q Q, Liu L L, Jiao Y Y, et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012, 1022(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm
    [15] 许强, 彭大雷, 亓星, 等. 2015年4·29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602001.htm

    Xu Q, Peng D L, Qi X, et al. Dangchuan 2# landslide of April 29, 2015 in Heifangtai area of Gansu Province: Characteristices and failure mechanism[J]. Journal of Engineering Geology, 2016, 24(2): 167-180(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602001.htm
    [16] 王潇, 杨博, 谷天峰, 等. 甘肃黑方台黄土压缩试验研究[J]. 陕西理工大学学报: 自然科学版, 2018, 34(2): 16-20, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201802005.htm

    Wang X, Yang B, Gu T F, et al. Study of loess compression test in Heifangtai, Gansu[J]. Journal of Shaanxi University of Technology: Natural Science Edition, 2018, 34(2): 16-20, 44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201802005.htm
    [17] 曹从伍. 甘肃黑方台黄土非饱和入渗特性研究[D]. 成都: 成都理工大学, 2018.

    Cao C W. Study on unsaturated infiltration characteristics of loess in Hei Fangtai, Gansu Province[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [18] 石兰君, 乔晓英, 曾磊, 等. 甘肃黑方台黄土水分运移规律模拟[J]. 干旱区研究, 2018, 35(4): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201804008.htm

    Shi L J, Qiao X Y, Zeng L, et al. Loess moisture migration in Heifangtai of Gansu Province[J]. Arid Zone Research, 2018, 35(4): 813-820(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201804008.htm
    [19] 叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 2022, 30(1): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201012.htm

    Ye W J, Qiang Y H, Jing H J, et al. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2020, 30(1): 144-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201012.htm
    [20] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学: 化学, 1987(12): 1309-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm

    Lei X Y. Porosity and collapsible of Loess in China[J]. Scientia Sinica: Chimica, 1987(12): 1309-1318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm
    [21] 高燕燕. 重塑黄土的渗透特性研究: 以延安新区为例[D]. 西安: 长安大学, 2016.

    Gao Y Y. Experimental study of permeability characteristics of remolded loess: A case study from Yan'an New District[D]. Xi'an: Chang'an University, 2016(in Chinese with English abstract).
    [22] 吴江鹏. 基于核磁共振的温度与盐溶液对黏土微观结构影响的研究[D]. 广西桂林: 桂林理工大学, 2021.

    Wu J P. A NMR-based study on the effect of temperature and salt solution on microstructure of clay[D]. Guilin, Guangxi: Guilin University of Technology, 2021(in Chinese with English abstract).
    [23] 何攀, 许强, 刘佳良, 等. 基于核磁共振技术的黄土内部孔径分布对逾渗特性的影响[J]. 科学技术与工程, 2020, 20(30): 12355-12360. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202030014.htm

    He P, Xu Q, Liu J L, et al. Effect of pore size distribution on percolation characteristics of loess based on nuclear magnetic resonance technique[J]. Science Technology and Engineering, 2020, 20(30): 12355-12360(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202030014.htm
    [24] 曾辰, 王全九, 樊军. 初始含水率对土壤垂直线源入渗特征的影响[J]. 农业工程学报, 2010, 26(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001007.htm

    Zeng C, Wang Q J, Fan J. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the CSAE, 2010, 26(1): 24-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001007.htm
    [25] 徐日庆, 徐丽阳, 邓祎文, 等. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报: 工学版, 2015, 49(8): 1417-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201508003.htm

    Xu R Q, Xu L Y, Deng W W, et al. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(8): 1417-1425(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201508003.htm
    [26] 朱兆波, 王新刚, 朱荣森, 等. 甘肃黑方台黄土滑坡滑带土剪切特性环剪试验研究[J]. 干旱区资源与环境, 2021, 35(5): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202105021.htm

    Zhu Z B, Wang X G, Zhu R S, et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai, Gansu[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 144-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202105021.htm
    [27] 李姝, 许强, 张立展, 等. 黑方台地区黄土强度弱化的浸水时效特征与机制分析[J]. 岩土力学, 2017, 38(7): 2043-2048, 2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707026.htm

    Li S, Xu Q, Zhang L Z, et al. Time effect and mechanism of strength weakening of loess soaked in water in Heifangtai area[J]. Rock and Soil Mechanics, 2017, 38(7): 2043-2048, 2058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707026.htm
    [28] 张先伟, 王常明. 一维压缩蠕变前后软土的微观结构变化[J]. 岩土工程学报, 2010, 32(11): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm

    Zhang X W, Wang C M. Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm
    [29] 廖红建, 刘少华, 何玉琪, 等. 黄土孔径和持水特性的分形维数研究[J]. 西北大学学报: 自然科学版, 2022, 52(3): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202203006.htm

    Liao H J, Liu S H, He Y Q, et al. Study on fractal dimension of pore size and water retention characteristics of loess[J]. Journal of Northwest University: Natural Science Edition, 2022, 52(3): 416-422(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202203006.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  360
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13

目录

    /

    返回文章
    返回