留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理力学机制的滑坡数值预报模式: 综述、挑战与机遇

张抒 唐辉明 龚文平 邹宗兴

张抒, 唐辉明, 龚文平, 邹宗兴. 基于物理力学机制的滑坡数值预报模式: 综述、挑战与机遇[J]. 地质科技通报, 2022, 41(6): 14-27. doi: 10.19509/j.cnki.dzkq.2022.0252
引用本文: 张抒, 唐辉明, 龚文平, 邹宗兴. 基于物理力学机制的滑坡数值预报模式: 综述、挑战与机遇[J]. 地质科技通报, 2022, 41(6): 14-27. doi: 10.19509/j.cnki.dzkq.2022.0252
Zhang Shu, Tang Huiming, Gong Wenping, Zou Zongxing. Landslide numerical forecasting mode based on physical- mechanical mechanism: Overviews, challenges and opportunities[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 14-27. doi: 10.19509/j.cnki.dzkq.2022.0252
Citation: Zhang Shu, Tang Huiming, Gong Wenping, Zou Zongxing. Landslide numerical forecasting mode based on physical- mechanical mechanism: Overviews, challenges and opportunities[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 14-27. doi: 10.19509/j.cnki.dzkq.2022.0252

基于物理力学机制的滑坡数值预报模式: 综述、挑战与机遇

doi: 10.19509/j.cnki.dzkq.2022.0252
基金项目: 

国家自然科学基金项目 42090055

湖北巴东地质灾害国家野外科学观测研究站开放基金课题 BNORSG202213

湖北省自然科学基金创新群体项目 2022CFA002

详细信息
    作者简介:

    张抒(1985-), 女, 助理研究员, 主要从事地质灾害岩土体稳定性评价与地质灾害预测预报的研究工作。E-mail: szhang@cug.edu.cn

    通讯作者:

    唐辉明(1962-), 男, 教授, 博士生导师, 主要从事工程地质数值模拟与地质灾害防治的教学与科研工作。E-mail: tanghm@cug.edu.cn

  • 中图分类号: P642.22

Landslide numerical forecasting mode based on physical- mechanical mechanism: Overviews, challenges and opportunities

  • 摘要:

    滑坡预测预报是地质灾害防治领域长期以来备受关注的前沿科学问题。当前的研究框架专注于滑坡的变形行为特征与外动力因素, 面临着普适性不强与预报精准度不高的双重瓶颈问题。基于目前研究现状, 系统梳理了滑带流变力学行为与强度弱化效应的内涵, 阐述了滑坡渐进破坏演化机制, 总结了滑坡预测预报模型所包含的类型, 并介绍了其中的典型模型, 指出当前研究主要存在如下问题: ①滑坡演化物理力学模型尚需扩展; ②预测预报模型未能充分结合滑坡演化过程和物理力学模型; ③物理力学模型预测与多场监测数据间的兼容性问题未能实际解决。针对上述问题, 阐述了基于物理力学过程的滑坡预测预报所面临的挑战, 并立足多学科融合与交叉, 提出了开展滑坡预测预报研究的新思路。新思路要求从滑坡滑带介质特性与流变力学行为出发, 建立滑坡演化过程物理力学模型, 紧密结合实时多场监测数据, 建立滑坡数值预报模式, 实现滑坡物理力学过程实时动态更新, 以期实现理论与技术的突破。

     

  • 图 1  国家自然科学基金资助项目中每年有关“滑坡预测预报”的项目数量与资助金额(2010-2020年)

    Figure 1.  Number of projects related to "landslide prediction and forecasting" and the amount of funding from the National Natural Science Foundation of China (2010-2020)

    图 2  黄土坡滑坡滑带土原位蠕变试验位移-时间曲线(修改自文献[25-26])

    Figure 2.  Displacement vs. time curve of in-situ creep test of slip zone soil on the Huangtupo landslide

    图 3  滑带蠕变曲线与长期强度曲线概念图(修改自文献[54])

    A中应力为σc的蠕变曲线并未呈现出加速蠕变阶段,此处采用蠕变变形极限值εf作为破坏准则,认为c点发生破坏

    Figure 3.  Conceptual diagram of slip zone soil creep curve and long-term strength curve

    图 4  锁固段变形破坏过程与滑坡蠕变阶段对应关系(修改自文献[90])

    体积膨胀起点C是滑坡加速蠕变的起点,是锁固段的临界破坏点;峰值强度点D为锁固段破裂点,标志着贯穿性滑带的形成;残余强度E点标志这滑坡进入了临界滑移阶段,是滑坡的临界滑移起点

    Figure 4.  Correspondence between the deformation and damage process of the locked section and the landslide creep phase

    图 5  前进式顺层岩质滑坡演化过程半经验模型弱化系数状态曲线(修改自文献[19],图中物理量的含义见正文)

    a~d.当滑坡从a阶段演化到d阶段时,S型曲线显示了滑带强度的软化过程;e.顺层岩质滑坡剖面示意图及滑带强度软化方向

    Figure 5.  Semi-empirical model weakening coefficient state curve of the evolution process of a forward progressive rockslide

    图 6  基于物理力学机制的滑坡数值预报模式概念图

    滑坡广义演化方程中S(t)为时间t对应的滑坡演化关键特征参量;Ω(t)为时间t对应的地质模型; L(t)为时间t对应的外动力因素; D(t)为时间t对应的初始边界条件;可考虑强度弱化与阶段特性的滑坡地质体本构方程中σ(t)为时间t对应的地质体应力; ε(t)为时间t对应的地质体应变,$ \dot{\varepsilon}$为时间t对应的地质体应变率;I(t)为时间t对应的地质体结构损伤能量;初始条件与边界条件中u为位移,δ(x)与ψ(x)分别为位移初始值与速率初始值;Pi为表面的外力分量; σij为应力张量; nj为表面法线方向矢量;平衡方程中σij, jFbi分别为应力与体力的张量形式;几何方程中,εij为应变张量; ui, juj, i为相对位移张量;本构方程中ij为总应变增量; ijeijp为弹性应变增量与塑性应变增量; E为弹性模量; G为剪切弹性模量; v为泊松比; σm为应力张量的球张量; δij为换标符号; 贝叶斯更新中fx, θ(x, θ)为依赖于参数θ的概率密度函数; fx|θ表示在参数θ给定某个值时x的条件分布,π(θ)为参数θ的先验概率

    Figure 6.  Conceptual diagram of the landslide numerical forecasting mode based on physical-mechanical mechanism

  • [1] 自然资源部地质灾害技术指导中心. 全国地质灾害通报2021[R]. 北京: 自然资源部地质灾害技术指导中心, 2022.

    Guide Center of Prevention Technology for Geo-hazards. National geological hazards bulletin 2021[R]. Beijing: Guide Center of Prevention Technology for Geo-hazards, 2022(in Chinese).
    [2] 崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017, 32(9): 985-992. doi: 10.16418/j.issn.1000-3045.2017.09.008

    Cui P, Jia Y, Su F H, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 985-992(in Chinese with English abstract). doi: 10.16418/j.issn.1000-3045.2017.09.008
    [3] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6): 1081-1090. doi: 10.3321/j.issn:1000-6915.2009.06.001

    He M C. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081-1090(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.001
    [4] 唐辉明. 斜坡地质灾害预测与防治的工程地质研究[M]. 北京: 科学出版社, 2015.

    Tang H M. Engineering geological study on prediction and prevention of slope disaster[M]. Beijing: Science Press, 2015(in Chinese).
    [5] Saito M. Forecasting the time of occurrence of a slope failure[C]//Anon. Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering. [S. l.]: [s. n.], 1965: 537-541.
    [6] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001

    Xu Q. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.02.001
    [7] 晏同珍. 滑坡预测预报的基础及我国主要滑坡岩组特征的确定[J]. 地球科学: 中国地质大学学报, 1985, 10(1): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501003.htm

    Yan T Z. Foundation of prognosis for landslides and determination of characteristics of main sliding rock groups in China[J]. Earth Science: Journal of China University of Geosciences, 1985, 10(1): 9-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501003.htm
    [8] 陈明东, 王兰生. 边坡变形破坏的灰色预报方法[C]//佚名. 第三届工程地质大会论文选集. 成都: 成都科技大学出版社, 1988: 1226-1233.

    Chen M D, Wang L S. Grey prediction method of slope deformation and destruction[C]//Anon. The Third Engineering Geological Conference Papers Anthology: Part 2. Chengdu: Chengdu Science and Technology Science Press, 1988: 1226-1233(in Chinese).
    [9] 秦四清, 张倬元, 黄润秋. 滑坡灾害预报的非线性动力学方法[J]. 水文地质工程地质, 1993, 12(5): 1-4, 58. doi: 10.16030/j.cnki.issn.1000-3665.1993.05.001

    Qin S Q, Zhang Z Y, Huang R Q. The nonlinear dynamics method to forecast landslide disaters[J]. Hydrogeology and Engineering Geology, 1993, 12(5): 1-14, 58(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.1993.05.001
    [10] Gong W P, Tian S, Wang L, et al. Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms[J]. Acta Geotechnica, 2022, 17: 4013-4031. doi: 10.1007/s11440-022-01455-2
    [11] Ma J W, Wang Y K, Niu X X, et al. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36: 3109-3129. doi: 10.1007/s00477-022-02183-5
    [12] 刘晓, 唐辉明, 刘瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. 岩土力学, 2009, 30(11): 3399-3405. doi: 10.3969/j.issn.1000-7598.2009.11.030

    Liu X, Tang H M, Liu Y. A new model for landslide displacement prediction based on set pair analysis and fuzzy-markov chain[J]. Rock and Soil Mechanics, 2009, 30(11): 3399-3405(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.030
    [13] Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data[J]. Landslides, 2018, 15(1): 123-133. doi: 10.1007/s10346-017-0915-7
    [14] Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3/4): 239-267.
    [15] Guzzetti F. Landslide fatalities and the evaluation of landslide risk in Italy[J]. Engineering Geology, 2000, 58(2): 89-107. doi: 10.1016/S0013-7952(00)00047-8
    [16] 唐辉明, 胡新丽, 熊承仁. 论工程地质模型与数值模拟结合的途径[C]//中国力学学会岩土力学专业委员会. 第九届全国岩土力学数值分析与解析方法讨论会特邀报告. [出版地不详]: [出版社不详], 2007: 54-59.

    Tang H M, Hu X L, Xiong C R. Research on the combination of engineering geological model and numerical simulation[C]//Anon. Invited Report of the 9th National Symposium on Numerical Analysis and Analytical Methods in Geotechnics. [S. l.]: [s. n.], 2007: 54-59(in Chinese).
    [17] 邹宗兴. 顺层岩质滑坡演化动力学研究[D]. 武汉: 中国地质大学(武汉), 2014.

    Zou Z X. Research on the evolution dynamics of the consequent bedding rockslides[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
    [18] Skempton A W. Long-term stability of clay slopes[J]. Geotechnique, 1964, 14(2): 77-102. doi: 10.1680/geot.1964.14.2.77
    [19] Tang H M, Zou Z X, Xiong C R, et al. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 2015, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
    [20] 沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.

    Shen Z J. Theoretical soil mechanics[M]. Beijing: China Water & Power Press, 2000(in Chinese).
    [21] 尹振宇. 软黏土流变理论及应用[M]. 上海: 同济大学出版社, 2016.

    Yin Z Y. Time dependency of soft clay and application[M]. Shanghai: Tongji University Press, 2016(in Chinese).
    [22] Petley D N, Higuchi T, Petley D J. et al. Development of progressive landslide failure in cohesive materials[J]. Geology(Boulder), 2005, 33(3): 201.
    [23] Li C D, Tang H M, Han D, et al. Exploration of the creep properties of undisturbed shear zone soil of the Huangtupo landslide[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 1237-1248. doi: 10.1007/s10064-017-1174-5
    [24] Hu W, Chang C S, McSaveney M, et al. A weakening rheology of dry granular flows with extensive brittle grain damage in high-speed rotary shear experiments[J]. Geophysical Research Letters, 2020, 46: e2020GL087763.
    [25] Tan Q W, Tang H M, Fan L, et al. In situ triaxial creep test for investigating deformational properties of gravelly sliding zone soil: Example of the Huangtupo 1# landslide, China[J]. Landslides, 2018, 15(12): 2499-2508. doi: 10.1007/s10346-018-1062-5
    [26] Wang S, Wang J E, Wu W, et al. Creep properties of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir region, China[J]. Engineering Geology, 2020, 267: 105493. doi: 10.1016/j.enggeo.2020.105493
    [27] 孙淼军, 唐辉明, 王潇弘, 等. 蠕动型滑坡滑带土蠕变特性研究[J]. 岩土力学, 2017, 38(2): 385-391, 399. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702012.htm

    Sun M J, Tang H M, Wang X H, et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics, 2017, 38(2): 385-391, 399(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702012.htm
    [28] Yao Y P, Kong L M, Hu J. An elastic-viscous-plastic model for overconsolidated clays[J]. Science China Technological Sciences, 2013, 56(2): 441-457. doi: 10.1007/s11431-012-5108-y
    [29] Pirulli M, Colombo A, Scavia C. From back-analysis to run-out prediction: A case study in the western Italian Alps[J]. Landslides, 2011, 8(2): 159-170. doi: 10.1007/s10346-010-0248-2
    [30] 黄耀英, 孙冠华, 李春光, 等. 基于实测变形的雾江滑坡体弹-黏塑性参数反馈[J]. 岩土力学, 2017, 38(6): 1739-1745, 1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706024.htm

    Huang Y Y, Sun G H, Li C G. et al. Elastic-viscoplastic parameter feedback of Wujiang River landslide corresponding to measured deformation[J]. Rock and Soil Mechanics, 2017, 38(6): 1739-1745, 1780(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706024.htm
    [31] 朱长歧, 郭见杨. 黏土流变特性的再认识及确定长期强度的新方法[J]. 岩土力学, 1990, 11(2): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199002001.htm

    Zhu C Q, Guo J Y. The farther study for the rheological behaviour of clay soil and the new determination method of long-term strength[J]. Rock and Soil Mechanics, 1990, 11(2): 15-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199002001.htm
    [32] 王志俭, 殷坤龙, 简文星, 等. 三峡库区万州红层砂岩流变特性试验研究[J]. 岩石力学与工程学报, 2008, 27(4): 840-847. doi: 10.3321/j.issn:1000-6915.2008.04.026

    Wang Z J, Yin K L, Jian W X, et al. Experimental study on rheological behaviors of Wanzhou red sandstone in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 840-847(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.04.026
    [33] 崔德山, 陈琼, 项伟, 等. 黄土坡滑坡饱和滑带土三轴压缩应力松弛试验研究[J]. 岩土力学, 2018, 39(增刊2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2030.htm

    Cui D S, Chen Q, Xiang W, et al. Experimental study of stress relaxation characteristics of saturated sliding zone soils of Huangtupo landslide under triaxial compression[J]. Rock and Soil Mechanics, 2018, 39(S2): 209-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2030.htm
    [34] 王鲁男, 晏鄂川, 宋琨, 等. 滑带土残余强度的速率效应及其对滑坡变形行为的影响[J]. 中南大学学报: 自然科学版, 2017, 48(12): 3350-3358. doi: 10.11817/j.issn.1672-7207.2017.12.028

    Wang L N, Yan E C, Song K, et al. Rate effect of residual strength of slip soils and its impact on deformation process of landslides[J]. Journal of Central South University: Science and Technology, 2017, 48(12): 3350-3358(in Chinese with English abstract). doi: 10.11817/j.issn.1672-7207.2017.12.028
    [35] 胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. doi: 10.3321/j.issn:1000-4548.2009.10.020

    Hu M J, Wang F W, Cheng Q G, et al. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2009.10.020
    [36] 赵帆程, 苗发盛, 吴益平, 等. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性[J]. 地质科技通报, 2022, 41(2): 315-324. doi: 10.19509/j.cnki.dzkq.2022.0045

    Zhao F C, Miao F S, Wu Y P, et al. Strength characteristics of slip zone soils of the Tongjiaping landslide in the Three Gorges Reservoir area under different ring shear conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 315-324(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0045
    [37] Wang G H, Suemine A, Schulz W H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan[J]. Earth Surface Processes and Landforms, 2010, 35(4): 407-416. http://www.onacademic.com/detail/journal_1000033836105610_12e9.html
    [38] Suzuki M, Yamamoto T, Tanikawa K, et al. Variation in residual strength of clay with shearing speed[J]. Yamaguchi Daigaku Kogakubu Kenkyu Hokoku: Memoirs of the Faculty of Engineering, Yamaguchi University, 2002, 50: 45-49.
    [39] Schulz W H, McKenna J P, Kibler J D, et al. Relations between hydrology and velocity of a continuously moving landslide: Evidence of pore-pressure feedback regulating landslide motion?[J]. Landslides, 2009, 6(3): 181-190. doi: 10.1007/s10346-009-0157-4
    [40] Scaringi G, Hu W, Xu Q, et al. Shear-rate-dependent behavior of clayey bimaterial interfaces at landslide stress levels[J]. Geophysical Research Letters, 2018, 45(2): 766-777. doi: 10.1002/2017GL076214
    [41] 殷跃平. 全面提升地质灾害防灾减灾科技水平[J]. 中国地质灾害与防治学报, 2018, 29(5): 3. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201805024.htm

    Yin Y P. Comprehensively improve the level of science and technology for geological disaster prevention and mitigation[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 3(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201805024.htm
    [42] 唐辉明, 鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 129-136. doi: 10.13544/j.cnki.jeg.2018.01.014

    Tang H M, Lu S. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Engineering Geology, 2018, 26(1): 129-136(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2018.01.014
    [43] Wen B P, Aydin A, Duzgoren-Aydin N S, et al. Residual strength of slip zones of large landslides in the Three Gorges area, China[J]. Engineering Geology, 2007, 93(3/4): 82-98.
    [44] Chandler R J. The measurement of residual strength in triaxial compression[J]. Geotechnique, 1966, 16(3): 181-186. doi: 10.1680/geot.1966.16.3.181
    [45] Yan J B, Zou Z X, Mu R, et al. Evaluating the stability of Outang landslide in the Three Gorges Reservoir area considering the mechanical behavior with large deformation of the slip zone[J/OL]. Nature Hazards, 2022(2021-12-21)[2022-07-13]. https://doi.org/10.1007/s11069-022-05276-0.
    [46] 王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm

    Wang S, Xiang W, Cui D S, et al. Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 91-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm
    [47] Skempton A W. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle-size, aging and overconsolidation[J]. Geotechnique, 1986, 36(3): 425-447. doi: 10.1680/geot.1986.36.3.425
    [48] 秦四清. 斜坡失稳过程的非线性演化机制与物理预报[J]. 岩土工程学报, 2005, 27(11): 1241-1248. doi: 10.3321/j.issn:1000-4548.2005.11.001

    Qin S Q. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Jounal of Geotechnical Engineering, 2005, 27(11): 1241-1248(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2005.11.001
    [49] Chen H R, Qin S Q, Xue L, et al. A physical model predicting instability of rock slopes with locked segmentsalong a potential slip surface[J]. Engineering Geology, 2018, 242: 34-43. doi: 10.1016/j.enggeo.2018.05.012
    [50] Zou Z X, Yan J B, Tang H M, et al. A shear constitutive model for describing the full process of the deformation and failure of slip zone soil[J]. Engineering Geology, 2020, 276: 105766. doi: 10.1016/j.enggeo.2020.105766
    [51] 孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.

    Sun J. Rheological behavior of geomaterials and its engineering applications[M]. Beijing: China Architecture and Building Press, 1999(in Chinese).
    [52] Yang J H, Lu W B, Chen M, et al. Microseism induced by transient release of in situ stress during deep rock mass excavation by blasting[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 859-875. doi: 10.1007/s00603-012-0308-0
    [53] 蒋秀姿, 文宝萍. 缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J]. 岩土力学, 2015, 36(2): 495-501, 549. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502030.htm

    Jiang X Z, Wen B P. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics, 2015, 36(2): 495-501, 549(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502030.htm
    [54] Ladanyi B. An engineering theory of creep of frozen soils[J]. Canadian Geotechnical Journal, 1972, 9(1): 63-80. doi: 10.1139/t72-005
    [55] 李丽, 邓亚虹, 王鹏, 等. 地裂缝带Q3黄土强度与流变长期强度关系研究[J]. 地下空间与工程学报, 2018, 14(1): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801033.htm

    Li L, Deng Y H, Wang P, et al. Study on the relationship between the shear strength and the long-term rheological strength of the Q3 loess in the fissure zone[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 241-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801033.htm
    [56] 周春梅, 赵子鹏, 鲁阳, 等. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报, 2016, 36(2): 213-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm

    Zhou C M, Zhao Z P, Lu Y, et al. The influence of water content on strength and deformation parameters of sliding zone and slope stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 213-219(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm
    [57] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [58] Rehbinder P. New physico-chemical phenomena in the deformation and mechanical treatment of solids[J]. Nature, 1947, 159: 866-867.
    [59] 朱赛楠, 殷跃平, 李滨. 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904017.htm

    Zhu S N, Yin Y P, Li B. Shear creep behavior of soft interlayer in Permian carbonaceous shale[J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904017.htm
    [60] Zhou Z, Cai X, Chen L, et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone[J]. Engineering Geology, 2017, 220: 1-12.
    [61] Wang X G, Zhan H B, Wang J D, et al. On the mechanical damage to tailings sands subjected to dry-wet cycles[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(6): 4647-4657.
    [62] Huang G, Zheng M. Effect of dry-wet cycling on the residual strength characteristics of coal measure soil[J]. KSCE Journal of Civil Engineering, 2021, 25(11): 4184-4195.
    [63] 汪时机, 王晓琪, 李达, 等. 膨胀土干湿循环裂隙演化及其土-水特征曲线研究[J]. 岩土工程学报, 2021, 43(增刊1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1013.htm

    Wang S J, Wang X Q, Li D, et al. Evolution of fissures and bivariate-bimodal soil-water characteristic curves of expansive soil under drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 58-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1013.htm
    [64] 胡大为. 基于干湿循环效应的红黏土力学特性与孔隙结构研究[D]. 长沙: 湖南科技大学, 2017.

    Hu D W. Research on mechanical properties and microstracture of red clay under dry-wet cycling condition[D]. Changsha: Hunan University of Science and Technology, 2017(in Chinese with English abstract).
    [65] Bishop A W. The strength of soils as engineering materials[J]. Geotechnique, 1966, 16(2): 91-128.
    [66] Bjerrum D L. Progressive failure in slopes of over-consolidated plastic clay and clay shales[J]. Journal of Soil Mechanics & Foundations Div. ASCE, 1967, 93(5): 3-49.
    [67] Deng L, Yuan H, Chen J, et al. Experimental investigation on progressive deformation of soil slope using acoustic emission monitoring[J]. Engineering Geology, 2019, 261: 105-295.
    [68] Leroueil S. Natural slopes and cuts: Movement and failure mechanisms[J]. Géotechnique, 2001, 51(3): 197-243.
    [69] 孙立娟. 基于滑带软化的牵引式滑坡渐进失稳机理及其演化试验研究[D]. 成都: 西南交通大学, 2019.

    Sun L J. Experimental study on progressive instability mechanism and evolution of retrogressive landslide based on sliding zone softening[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese with English abstract).
    [70] Cuomo S, DiPerna A, Martinelli M. Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope[J]. Engineering Geology, 2021, 294: 106-371.
    [71] Li B, Tang H M, Gong W P, et al. Numerical study of the runout behavior of the Kamenziwan landslide in the Three Gorges Reservoir region[J]. Landslides, 2022, 19(4): 963-976.
    [72] Puzrin A M, Schmid A. Progressive failure of a constrained creeping landslide[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2011, 467: 2444-2461.
    [73] Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet[J]. Landslides, 2015, 13(1): 39-54.
    [74] Miao T, Ma C, Wu S. Evolution model of progressive failure of landslides[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1999, 125(10): 827-831.
    [75] Chen G Q, Huang R Q, Xu Q, et al. Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method[J]. Journal of Mountain Science, 2013, 10(4): 532-540.
    [76] 倪卫达. 基于岩土体动态劣化的边坡时变稳定性研究[D]. 武汉: 中国地质大学(武汉), 2014.

    Ni W D. Time-varying stability analysis of slope based on dynamic deterioration of geomaterials[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
    [77] 张抒, 唐辉明, 刘晓, 等. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征[J]. 地球科学, 2018, 43(2): 622-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802022.htm

    Zhang S, Tang H M, Liu X, et al. Seepage and instability characteristics of slope based on spatial variation structure of saturated hydraulic conductivity[J]. Earth Science, 2018, 43(2): 622-634(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802022.htm
    [78] Gong W, Zhao C, Juang C H, et al. Coupled characterization of stratigraphic and geo-properties uncertainties: A conditional random field approach[J]. Engineering Geology, 2021, 294: 106-348.
    [79] Juang C H, Li D K, Fang S Y, et al. Simplified procedure for developing joint distribution of amax and Mw for probabilistic liquefaction hazard analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8): 1050-1058.
    [80] 何成, 唐辉明, 申培武, 等. 应变软化边坡渐进破坏模式及稳定性可靠度[J]. 地球科学, 2021, 46(2): 697-707. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htm

    He C, Tang H M, Shen P W, et al. Progressive failure mode and stability reliability of strain-softening slope[J]. Earth Science, 2021, 46(2): 697-707(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htm
    [81] Wu Y, Miao F, Li L, et al. Time-varying reliability analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir based on water-soil coupling[J]. Engineering Geology, 2017, 226: 267-276.
    [82] Rosser N, Lim M, Petley D, et al. Patterns of precursory rockfall prior to slope failure[J]. JGR Earth Surface, 2007, 112: F04014.
    [83] Piciullo L, Calvello M, Cepeda J. Territorial early warning systems for rainfall induced landslides[J]. Earth-Science Reviews, 2018, 179: 228-247.
    [84] Fukuzono T. A new method for predicting the failure time of a slope failure[C]//Anon. Proceedings of the 4th International Conference and Field Workshop on Landslides. Tokyo: [s. n.], 1985: 145-150.
    [85] Petley D N, Higuchi T, Petley D J, et al. Development of progressive landslide failure in cohesive materials[J]. Geology, 2005, 33(3): 201-204.
    [86] Voight B. A method for prediction of volcanic eruptions[J]. Nature, 1988, 332: 125-130.
    [87] Segalini A, Valletta A, Carri A. Landslide time-of-failure forecast and alert threshold assessment: A generalized criterion[J]. Engineering Geology, 2018, 245: 72-80.
    [88] Crosta G B, Agliardi F. How to obtain alert velocity thresholds for large rockslides[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2002, 27(36): 1557-1565.
    [89] Rose N D, Hungr O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(2): 308-320.
    [90] 秦四清, 王媛媛, 马平. 崩滑灾害临界位移演化的指数律[J]. 岩石力学与工程学报, 2010, 29(5): 873-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005005.htm

    Qin S Q, Wang Y Y, Ma P. Exponential laws of critical displacement evolution for landslides and avalanches[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 873-880(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005005.htm
    [91] Chen H R, Qin S Q, Xue L, et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology, 2017, 242: 34-43.
    [92] Chen H, Qin S, Xue L, et al. Why the Xintan landslide was not triggered by the heaviest historical rainfall: Mechanism and review[J]. Engineering Geology, 2021, 294: 106379.
    [93] Tang Y, Lin H, Wang Y, et al. Rock slope stability analysis considering the effect of locked section[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 7241-7251.
    [94] 张倬元, 黄润秋. 岩体失稳前系统的线性和非线性状态及破坏时间预报的"黄金分割数法"[C]//佚名. 全国第三次工程地质大会论文集: 下卷. 成都: 成都科技大学出版社, 1988: 563-571.

    Zhang Z Y, Huang R Q. The "Golden Section Number" method for predicting the linear and nonlinear states and failure time of rock mass system before instability[C]//Anon. The 3rd Engineering Geological Conference Papers Anthology of China: Part Ⅱ. Chengdu: Chengdu Technology University, 1988: 563-571(in Chinese with English abstract).
    [95] Qin S, Jiao J, Wang S. A nonlinear dynamical model of landslide evolution[J]. Geomorphology, 2002, 43(1/2): 77-85.
    [96] Du J, Yin K, Lacasse S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2013, 10(2): 203-218.
    [97] Zhu C H, Hu G D. Time series prediction of landslide displacement using SVM model: Application to Baishuihe landslide in Three Gorges Reservoir area, China[J]. Applied Mechanics and Materials, 2012, 239/240: 1413-1420.
    [98] Du W Q, Wang G. A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis[J]. Engineering Geology, 2016, 205: 12-23.
    [99] Liang G L, Xu W Y. Application of fuzzy Markov chains model in landslide stability prediction[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(4): 64-67.
    [100] Cao Y, Yin K, Alexander D E, et al. Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors[J]. Landslides, 2016, 13(4): 725-736.
    [101] Ma J, Tang H, Xiao L, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: A case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(4): 1-9.
    [102] Zhang J, Tang H, Tannant D D, et al. Combined forecasting model with CEEMD-LCSS reconstruction and the ABC-SVR method for landslide displacement prediction[J]. Journal of Cleaner Production, 2021, 293: 126205.
    [103] Nie L, Li Z, Lü Y, et al. A new prediction model for rock slope failure time: A case study in west open-pit mine, Fushun, China[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 975-988.
    [104] Intrieri E, Carlà T, Gigli G. Forecasting the time of failure of landslides at slope-scale: A literature review[J]. Earth Science Reviews, 2019, 193: 333-349.
    [105] Xu Q, Yuan Y, Zeng Y, et al. Some new pre-warning criteria for creep slope failure[J]. Science China Technological Sciences, 2011, 54(1): 210-220.
    [106] Carlà T, Intrieri E, Farina, P, et al. A new method to identify impending failure in rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 76-81.
    [107] 吴树仁, 韩金良, 石菊松, 等. 三峡库区巴东县城附近主要滑坡边界轨迹分形分维特征与滑坡稳定性关系[J]. 地球学报, 2005, 26(5): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200505010.htm

    Wu S R, Han J L, Shi J S, et al. A Study of the relationship between landslide stability and fractal dimension of the major landslide trace pattern near Badong in the reservoir region of the Yangtze Gorge Project[J]. Acta Geoscientica Sinica, 2005, 26(5): 71-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200505010.htm
    [108] 黄润秋, 陈国庆, 唐鹏. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J]. 岩石力学与工程学报, 2017, 36(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm

    Huang R Q, Chen G Q, Tang P. Precursor information of locking segment landslides based on transient characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 521-533(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm
    [109] Piciullo L, Calvello M, Cepeda J. Territorial early warning systems for rainfall induced landslides[J]. Earth-Science Reviews, 2018, 179: 228-247.
    [110] 倪卫达, 唐辉明, 胡新丽, 等. 黄土坡临江Ⅰ号崩滑体变形及稳定性演化规律研究[J]. 岩土力学, 2013, 34(10): 2961-2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310031.htm

    Ni W D, Tang H M, Hu X L, et al. Research on deformation and stability evolution law of Huangtupo riverside slump-mass No. Ⅰ[J]. Rock and Soil Mechanics, 2013, 34(10): 2961-2970(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310031.htm
    [111] 贺可强, 郭璐, 陈为公. 降雨诱发堆积层滑坡失稳的位移动力评价预测模型研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4204-4215. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2070.htm

    He K Q, Guo L, Chen W G. Research on displacement dynamic evaluation and forecast model of colluvial landslides induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4204-4215(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2070.htm
    [112] 许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403020.htm

    Xu Q, Huang R Q, Li X Z. Research progress in time forecast and prediction of landslides[J]. Advances in Earth Science, 2004, 19(3): 478-483(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403020.htm
    [113] 王念秦, 王永锋, 罗东海, 等. 中国滑坡预测预报研究综述[J]. 地质论评, 2008, 54(3): 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200803013.htm

    Wang N Q, Wang Y F, Luo D H, et al. Review of landslide prediction and forecast research in China[J]. Geological Review, 2008, 54(3): 355-361(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200803013.htm
    [114] Rubin Y, Chen X, Murakami H, et al. A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields[J]. Water Resources Research, 2010, 46(10): 1-23.
    [115] Li Z, Gong W, Li T, et al. Probabilistic back analysis for improved reliability of geotechnical predictions considering parameters uncertainty, model bias, and observation error[J]. Tunnelling and Underground Space Technology, 2021, 115: 104051. http://www.sciencedirect.com/science/article/pii/S088677982100242X
    [116] Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525: 547-551.
    [117] Liu W, He S. Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment[J]. Landslides, 2020, 17(7): 1529-1544.
  • 加载中
图(6)
计量
  • 文章访问数:  1438
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17

目录

    /

    返回文章
    返回