留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干湿循环作用下云母石英片岩抗压性能劣化规律及机理

李志刚 叶宏林 刘伟 徐光黎 马郧 朱佳

李志刚, 叶宏林, 刘伟, 徐光黎, 马郧, 朱佳. 干湿循环作用下云母石英片岩抗压性能劣化规律及机理[J]. 地质科技通报, 2023, 42(5): 36-42. doi: 10.19509/j.cnki.dzkq.tb20210817
引用本文: 李志刚, 叶宏林, 刘伟, 徐光黎, 马郧, 朱佳. 干湿循环作用下云母石英片岩抗压性能劣化规律及机理[J]. 地质科技通报, 2023, 42(5): 36-42. doi: 10.19509/j.cnki.dzkq.tb20210817
Li Zhigang, Ye Honglin, Liu Wei, Xu Guangli, Ma Yun, Zhu Jia. Degradation law and mechanism of the compressive strength of mica quartz schist under dry-wet cycles[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 36-42. doi: 10.19509/j.cnki.dzkq.tb20210817
Citation: Li Zhigang, Ye Honglin, Liu Wei, Xu Guangli, Ma Yun, Zhu Jia. Degradation law and mechanism of the compressive strength of mica quartz schist under dry-wet cycles[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 36-42. doi: 10.19509/j.cnki.dzkq.tb20210817

干湿循环作用下云母石英片岩抗压性能劣化规律及机理

doi: 10.19509/j.cnki.dzkq.tb20210817
基金项目: 

国家自然科学基金项目 41772314

江苏省高等学校自然科学研究项目 20KJB170020

湖北省科技厅重点研发项目 2021BCA219

湖北省自然资源厅科技项目 ZRZY2022KJ17

详细信息
    作者简介:

    李志刚(1988-), 男, 讲师, 主要从事岩土力学方面的研究工作。E-mail: lzgdyy@yzu.edu.cn

    通讯作者:

    徐光黎(1963-), 男, 教授, 博士生导师, 主要从事地质工程方面的研究工作。E-mail: xu1963@cug.edu.cn

  • 中图分类号: TU458+.3

Degradation law and mechanism of the compressive strength of mica quartz schist under dry-wet cycles

  • 摘要:

    干湿循环作用可促使片岩边坡岩体力学性能劣化、稳定性降低, 进而诱发滑坡、崩塌等地质灾害。以湖北十堰地区广泛分布的云母石英片岩为研究对象, 分别对不同干湿循环作用下云母石英片岩试样开展了单轴压缩试验和电镜扫描测试, 揭示了其抗压性能劣化规律及机理。结果表明: 在干湿循环作用下, 云母石英片岩抗压强度和弹性模量劣化效应明显, 前期劣化速率较快、劣化幅度较大, 后期劣化速率减缓、幅度降低; 宏观破坏模式受到片理面的控制作用而逐步增强, 由"X"型、"Y"型破坏逐渐演变为沿片理面的剪切破坏; 微观结构表现为片状矿物颗粒不断剥落、颗粒化, 微裂隙、孔隙逐渐发育、扩展贯通; 干湿循环作用使得云母石英片岩产生次生矿物、离子和岩屑并不断离开岩石, 促使片理、微裂隙等结构面扩展开裂、岩石结构松散, 进而使得云母石英片岩整体力学性能劣化。研究成果可为片岩边坡稳定性分析及治理工程设计提供理论依据。

     

  • 图 1  云母石英片岩显微照片

    Figure 1.  Micrograph of mica quartz schist

    图 2  云母石英片岩单轴压缩试验试样

    Figure 2.  Mica quartz schist samples of uniaxial compression test

    图 3  干湿循环处理试样示意图

    Figure 3.  Schematic diagram of samples treated by dry-wet cycles

    图 4  单轴压缩试验示意图

    Figure 4.  Schematic diagram of the uniaxial compression test

    图 5  不同干湿循环作用下云母石英片岩应力-应变曲线

    Figure 5.  Stress-strain curve of mica quartz schist under different dry-wet cycles

    图 6  不同干湿循环下云母石英片岩单轴抗压强度

    Figure 6.  Uniaxial compressive strength of mica quartz schist under different dry-wet cycles

    图 7  不同干湿循环下云母石英片岩弹性模量

    Figure 7.  Elastic modulus of mica quartz schist under different dry-wet cycles

    图 8  云母石英片岩单轴抗压强度和弹性模量试验值及拟合曲线

    Figure 8.  Test values and fitting curves of the uniaxial compressive strength and elastic modulus of mica quartz schist

    图 9  云母石英片岩抗压强度和弹性模量劣化度

    Figure 9.  Deterioration law of the compressive strength and elastic modulus of mica quartz schist

    图 10  不同岩石归一化单轴抗压强度与干湿循环次数的关系

    Figure 10.  Relations between the normalized uniaxial compressive strength and number of dry-wet cycles in previous studies

    图 11  不同干湿循环作用下云母石英片岩试样单轴压缩破坏特征

    干湿循环次数: a.n=0次;b.n=1次;c.n=3次;d.n=5次;e.n=10次;f.n=15次;g.n=20次

    Figure 11.  Failure characteristics of mica quartz schist samples under uniaxial compression with different dry-wet cycles

    图 12  干湿循环作用下云母石英片岩试样单轴压缩宏观破坏模式变化规律

    Figure 12.  Variation in macroscopic failure modes in uniaxial compression of mica quartz schist samples under dry-wet cycles

    图 13  干湿循环作用下云母石英片岩垂直片理SEM照片

    干湿循环次数:a.n=0次;b.n=3次;c.n=10次;d.n=20次

    Figure 13.  SEM images of the vertical foliation of mica quartz schist under dry-wet cycles

    图 14  干湿循环作用下云母石英片岩平行片理SEM照片

    干湿循环次数:a.n=0次;b.n=3次;c.n=10次;d.n=20次

    Figure 14.  SEM images of parallel foliation of mica quartz schist under dry-wet cycles

    图 15  干湿循环作用下云母石英片岩微观结构劣化过程

    Figure 15.  Microstructure degradation process of mica quartz schist under dry-wet cycles

    表  1  云母石英片岩矿物成分及质量分数

    Table  1.   Mineral composition and content of mica quartz schist

    矿物成分 白云母 绿泥石 石英 钠长石 方解石 白云石 微斜长石
    wB/% 21.59 28.64 22.75 8.95 9.80 6.41 1.86
    下载: 导出CSV
  • [1] Tang H, Wasowski J, Juang C. Geohazards in the Three Gorges Reservoir area, China: Lessons learned from decades of research[J]. Engineering Geology, 2019, 261: 105267. doi: 10.1016/j.enggeo.2019.105267
    [2] Yao W, Li C, Zhan H, et al. Multiscale study of physical and mechanical properties of sandstone in Three Gorges Reservoir region subjected to cyclic wetting-drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 2215-2231.
    [3] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

    Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0308
    [4] 姚华彦, 张振华, 朱朝辉, 等. 干湿交替对砂岩力学特性影响的试验研究[J]. 岩土力学, 2010, 31(12): 3704-3708. doi: 10.3969/j.issn.1000-7598.2010.12.002

    Yao H Y, Zhang Z H, Zhu C H, et al. Experimental study of mechanical properties of sandstone under cyclic drying and wetting[J]. Rock and Soil Mechanics, 2010, 31(12): 3704-3708(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.12.002
    [5] 傅晏, 王子娟, 刘新荣, 等. 干湿循环作用下砂岩细观损伤演化及宏观劣化研究[J]. 岩土工程学报, 2017, 39(9): 1653-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709016.htm

    Fu Y, Wang Z J, Liu X R, et al. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1653-1661(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709016.htm
    [6] 梅华, 朱燕, 牛传星, 等. 饱和-失水循环作用下蚀变岩劣化规律研究[J]. 工程地质学报, 2015, 23(6): 1039-1044. doi: 10.13544/j.cnki.jeg.2015.06.001

    Mei H, Zhu Y, Niu C X, et al. Laboratory study on deterioration law of altered rock under effect of water saturation-dehydration circulation[J]. Journal of Engineering Geology, 2015, 23(6): 1039-1044(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2015.06.001
    [7] Wen H, Dong S, Li Y, et al. The influence of cyclic wetting and drying on the fracture toughness of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 331-335. doi: 10.1016/j.ijrmms.2015.06.010
    [8] Zhou Z, Cai X, Chen L, et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone[J]. Engineering Geology, 2017, 220: 1-12. doi: 10.1016/j.enggeo.2017.01.017
    [9] Deng H F, Zhou M L, Li J L, et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock[J]. Arabian Journal of Geosciences, 2016, 9(12): 601. doi: 10.1007/s12517-016-2604-6
    [10] Wang C, Pei W, Zhang M, et al. Multi-scale experimental investigations on the deterioration mechanism of sandstone under wetting-drying cycles[J]. Rock Mechanics and Rock Engineering, 2021, 54: 429-441. doi: 10.1007/s00603-020-02257-2
    [11] Ai T, Wu S, Zhang R, et al. Changes in the structure and mechanical properties of a typical coal induced by water immersion[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104597. doi: 10.1016/j.ijrmms.2020.104597
    [12] 宋佳航, 严绍军, 项伟, 等. 大足石刻宝顶山砂岩毛细水迁移特性影响因素[J]. 地质科技通报, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099

    Song J H, Yan S J, Xiang W, et al. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0099
    [13] Xie K, Jiang D, Sun Z, et al. NMR, MRI and AE statistical study of damage due to a low number of wetting-drying cycles in sandstone from the Three Gorges Reservoir area[J]. Rock Mechanics and Rock Engineering, 2018, 51: 3625-3634. doi: 10.1007/s00603-018-1562-6
    [14] Wang C, Pei W, Zhang M, et al. Multi-scale experimental investigations on the deterioration mechanism of sandstone under wetting-drying cycles[J]. Rock Mechanics and Rock Engineering, 2021, 54: 429-441. doi: 10.1007/s00603-020-02257-2
    [15] 周大华, 翟全礼, 刘廷, 等. 鄂西北地区公路片岩边坡变形破坏模式及失稳机制研究[J]. 路基工程, 2013(4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201304008.htm

    Zhou D H, Zhai Q L, Liu T, et al. Study on deformation mode and failure mechanism of schist slope along highway in northwest Hubei[J]. Subgrade Engineering, 2013(4): 29-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201304008.htm
    [16] 邹浩, 晏鄂川, 周瑜. 武当群片岩隧道围岩变形破坏机理研究[J]. 公路, 2015, 60(11): 225-234. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201511050.htm

    Zou H, Yan E C, Zhou Y. Research on the surrounding rock deformation and failure mechanism of Wudang Group schist tunnel[J]. Highway, 2015, 60(11): 225-234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201511050.htm
    [17] Li X S, Peng K, Peng J, et al. Experimental investigation of cyclic wetting-drying effect on mechanical behavior of a medium-grained sandstone[J]. Engineering Geology, 2021, 293: 106335.
    [18] Chen S, Jiang T, Wang H, et al. Influence of cyclic wetting-drying on the mechanical strength characteristics of coal samples: A laboratory-scale study[J]. Energy Science and Engineering, 2019, 7: 3020-3037.
    [19] Chen X, He P, Qin Z. Strength weakening and energy mechanism of rocks subjected to wet-dry cycles[J]. Geotechnical and Geological Engineering, 2019, 37(5): 3915-3923.
    [20] Liu X, Jin M, Li D, et al. Strength deterioration of a shaly sandstone under dry-wet cycles: A case study from the Three Gorges Reservoir in China[J]. Bulletin of Engineering Geology & the Environment, 2018, 77: 1607-1621.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  292
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 录用日期:  2022-05-11
  • 修回日期:  2022-01-25

目录

    /

    返回文章
    返回