留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒对活油中沥青质分散潜力探讨

展转盈 倪军

展转盈, 倪军. 纳米颗粒对活油中沥青质分散潜力探讨[J]. 地质科技通报, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226
引用本文: 展转盈, 倪军. 纳米颗粒对活油中沥青质分散潜力探讨[J]. 地质科技通报, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226
Zhan Zhuanying, Ni Jun. Dispersion potential of asphaltene in live oil by nanoparticles[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226
Citation: Zhan Zhuanying, Ni Jun. Dispersion potential of asphaltene in live oil by nanoparticles[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 86-94. doi: 10.19509/j.cnki.dzkq.tb20220226

纳米颗粒对活油中沥青质分散潜力探讨

doi: 10.19509/j.cnki.dzkq.tb20220226
基金项目: 

国家重点研发计划"CO2驱油技术及地质封存安全监测" 2018YFB0605500

详细信息
    作者简介:

    展转盈(1979—), 女, 副教授, 主要从事油气田提高采收率技术的研究工作。E-mail: 51698469@qq.com

    通讯作者:

    倪军(1981—), 男, 教授级高级工程师, 主要从事油气田开发方面的研究工作。E-mail: njunycyt2010@163.com

  • 中图分类号: TE357

Dispersion potential of asphaltene in live oil by nanoparticles

  • 摘要:

    为明确纳米颗粒在高温高压下抑制地层活油中沥青质沉淀的效果及机理, 通过开展高温高压固相颗粒检测实验, 分别采用激光探测、高压显微镜和高温高压过滤等方法, 研究了纳米颗粒二氧化硅(SiO2)(改性)和四氧化三钴(Co3O4)作用下地层活油中沥青质的聚集和沉淀特征, 结合电镜扫描和热重分析实验, 揭示了纳米颗粒抑制沥青质沉淀机理。实验结果表明, 目标储层地层原油中添加SiO2纳米颗粒后, 沥青质沉淀起始压力(AOP)由原来的59.2 MPa下降至53.4 MPa, 衰竭至35 MPa压力下, 沥青质颗粒的平均粒径由8.82 μm减小至5.53 μm, 沉淀量占比由66.4%降至46.4%。而添加Co3O4纳米颗粒后, 在泡点压力之上未出现明显沥青质沉淀, 35 MPa压力下沥青质颗粒平均粒径仅为1.65 μm, 沉淀量占比仅为13.6%。纳米颗粒能够抑制沥青质分子的析出、减缓沥青质颗粒的聚集速度、降低AOP及沥青质的沉淀量。与SiO2纳米颗粒相比, Co3O4纳米颗粒具有更高的沥青质吸附亲和力, 抑制效果更好。研究成果为防治沥青质沉积及改善沉积伤害提供了依据。

     

  • 图 1  固相颗粒检测系统原理简图

    Figure 1.  Schematic diagram of the solid particle detection system

    图 2  纳米颗粒氮气吸附和解吸等温线及孔径分布

    Figure 2.  Nitrogen adsorption and desorption isotherms and pore size distribution of nanoparticles

    图 3  原油透光率随压力的变化曲线

    a.纯地层原油;b.添加SiO2纳米颗粒的地层原油;c.添加Co3O4纳米颗粒的地层原油。Pb.泡点压力

    Figure 3.  Variation curve of crude oil transmittance with pressure

    图 4  高压显微镜下原油中沥青质颗粒随压力的变化

    Figure 4.  Changes of asphaltene particles in crude oil with pressure under high-pressure microscope

    图 5  35 MPa压力下原油中沥青质颗粒粒径分布对比

    Figure 5.  Comparison of particle size distribution of asphaltene particles in crude oil under 35 MPa pressure

    图 6  原油中沥青质沉淀量随压力的变化

    Figure 6.  Variation of asphaltene precipitation in crude oil with pressure

    图 7  纳米颗粒及沥青质颗粒的微观表面特征

    a.Co3O4纳米颗粒;b.SiO2纳米颗粒;c.纯沥青质颗粒;d.纳米颗粒吸附沥青质后;e.SiO2纳米颗粒表面上吸附的沥青质颗粒;f.Co3O4纳米颗粒表面上吸附的沥青质颗粒

    Figure 7.  Micro surface characteristics of nanoparticles and asphaltene particles

    图 8  纯沥青质和吸附在Co3O4和SiO2表面的沥青质燃烧后剩余质量变化

    Figure 8.  Residual mass changes of pure asphaltene and asphaltene adsorbed on the surface of Co3O4 and SiO2 after combustion

    表  1  地层原油基本高压物性参数

    Table  1.   Basic high-pressure physical parameters of the formation crude oil

    参数类型 数值
    地层原油组分C1~C7 xB/% 75.83
    地层原油组分C8~C12xB/% 15.18
    地层原油组分C12+xB/% 6.22
    地层原油相对分子质量/(g·mol-1) 78
    脱气原油相对分子质量/(g·mol-1) 224
    泡点压力/MPa 30.6
    溶解气油比/(m3·m-3) 275.4
    地层原油密度/(g·cm-3)(71.6 MPa,128.7℃) 0.731 6
    地层原油黏度/(mPa·s)(71.6 MPa,128.7℃) 2.78
    原油中饱和烃xB/% 65.5
    原油中芳香烃xB/% 23.3
    原油中胶质xB/% 8.7
    原油中沥青质xB/% 2.5
    胶体不稳定指数 2.12
    下载: 导出CSV

    表  2  纳米颗粒的孔隙结构参数

    Table  2.   Pore structure parameters of nanoparticles

    纳米颗粒类型 BJH模型 BET模型 平均纳米颗粒粒径/nm
    孔隙体积/(10-3mL·g-1) 平均孔径/nm 孔隙体积/(10-3mL·g-1) 平均孔径/nm 比表面积/(m2·g-1)
    SiO2 395.4 18.85 402.6 19.06 75.82 28.69
    Co3O4 133.2 20.28 131.8 24.16 21.35 47.62
    下载: 导出CSV
  • [1] 李新文, 张国威. 沥青质沉积对原油渗流特征的影响[J]. 地质科技通报, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602

    Li X W, Zhang G W. Influence of asphaltene deposition on oil seepage characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 15-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0602
    [2] Fakher S, Khlaifat A, Hossain M E, et al. A comprehensive review of sucker rod pumps' components, diagnostics, mathematical models, and common failures and mitigations[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(10): 3815-3839. doi: 10.1007/s13202-021-01270-7
    [3] 雷浩. 低渗储层CO2驱油过程中沉淀规律及防治对策研究[D]. 北京: 中国石油大学(北京), 2017.

    Lei H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process[D]. Beijing: China University of Petroleum(Beijing), 2017(in Chinese with English abstract).
    [4] 王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm

    Wang Z J. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm
    [5] 刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htm

    Liu L, Cao C, Cheng R Z, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htm
    [6] 王云飞, 魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181

    Wang Y F, Wei J G. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0181
    [7] Kalantari F, Farahbod F. Mixing of crude oil with organic ZnO nano-particles from rice bran to improve physical properties of crude oil: A novel agent for enhanced oil recovery[J]. Natural Resources Research, 2019, 28(3): 1183-1196. doi: 10.1007/s11053-018-9443-y
    [8] 叶航, 刘琦, 彭勃, 等. 纳米颗粒抑制CO2驱过程中沥青质沉积的研究进展[J]. 油气地质与采收率, 2020, 27(5): 86-94.

    Ye H, Liu Q, Peng B, et al. Inhibition of nanoparticles on asphaltene deposition during CO2 flooding: A review[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 86-94(in Chinese with English abstract).
    [9] Kazemzadeh Y, Eshraghi E, Kazemi K, et al. Behavior of asphaltene adsorption onto the metal xxide nanoparticle surface and its effect on heavy oil recovery[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 233-239.
    [10] Taborda E A, Franco C A, Lopera S H, et al. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions[J]. Fuel, 2016, 184: 222-232. doi: 10.1016/j.fuel.2016.07.013
    [11] Shojaati F, Riazi M, Mousavi S H, et al. Experimental investigation of the inhibitory behavior of metal oxides nanoparticles on asphaltene precipitation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 99-110.
    [12] Alemi F M, Dehghani S A M, Rashidi A, et al. Potential application of Fe2O3 and functionalized SiO2 nanoparticles for inhibiting asphaltene precipitation in live oil at reservoir conditions[J]. Energy & Fuels, 2021, 35(7): 5908-5924.
    [13] Eskin D, Omid M, Kamran A, et al. Reservoir impairment by asphaltenes: A critical review[J]. The Canadian Journal of Chemical Engineering, 2016, 94(6): 1202-1217. doi: 10.1002/cjce.22476
    [14] Uetani T. Wettability alteration by asphaltene deposition: A field example[C]//Anon. Abu Dhabi International Petroleum Exhibition and Conference, 10-13 November. Abu Dhabi, UAE: Society of Petroleum Engineers, 2014.
    [15] Papadimitriou N I, Romanos G E, Charalambopoulou G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281-293.
    [16] 郑希谭, 孙雯悦, 李实, 等. GB/T 26981-2011: 油气藏流体物性分析方法[S]. 北京: 石油工业出版社, 2010.

    Zheng X T, Sun W Y, Li S, et al. GB/T 26981-2011: Test method for reservoir fluid physical properties[S]. Beijing: Petroleum Industry Press, 2010(in Chinese).
    [17] 王翠红, 罗爱兰, 王子军. NB/SH/T 0509-2010: 石油沥青质四组分测定方法[S]. 北京: 中国石化出版社, 2010.

    Wang C H, Luo A L, Wang Z J. NB/SH/T 0509-2010: Test method for separation of asphalt into four fractions[S]. Beijing: SINOPEC Press, 2010(in Chinese).
    [18] 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256

    Lu Z D, Liu C L, Zang Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0256
    [19] 岳长涛, 李术元, 许心怡, 等. 宜宾地区页岩微孔特征及吸附解吸特性研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 84-94.

    Yue C T, Li S Y, Xu X Y, et al. Micropore characteristics and adsorption and desorption properties of shales in the Yibin region[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2018, 40(5): 84-94(in Chinese with English abstract).
    [20] Fard S R, Khadar R H. The effect of inhibitors asphaltene precipitation due to a natural depletion mechanism in crude oil[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2012, 34(20): 1868-1875. doi: 10.1080/15567036.2011.615003
    [21] Firoozinia H, Abad K F H, Varamesh A. A comprehensive experimental evaluation of asphaltene dispersants for injection under reservoir conditions[J]. Petroleum Science, 2016, 13(2): 280-291. doi: 10.1007/s12182-016-0078-5
    [22] Lyu C, Ning Z, Wang Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395-1405.
    [23] Maity S K, Blanco E, Ancheyta J, et al. Early stage deactivation of heavy crude oil hydroprocessing Catalysts[J]. Fuel, 2012, 100: 17-23.
    [24] Hosseinpour N, Mortazavi Y, Bahramian A, et al. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A: General, 2014, 477: 159-171.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  226
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 录用日期:  2022-09-14
  • 修回日期:  2022-09-11

目录

    /

    返回文章
    返回