留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例

康凤新 郑婷婷 冯亚伟 徐秋晓 刘彬涛 王义生 李传谟

康凤新, 郑婷婷, 冯亚伟, 徐秋晓, 刘彬涛, 王义生, 李传谟. 北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例[J]. 地质科技通报, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477
引用本文: 康凤新, 郑婷婷, 冯亚伟, 徐秋晓, 刘彬涛, 王义生, 李传谟. 北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例[J]. 地质科技通报, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477
KANG Fengxin, ZHENG Tingting, FENG Yawei, XU Qiuxiao, LIU Bintao, WANG Yisheng, LI Chuanmo. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477
Citation: KANG Fengxin, ZHENG Tingting, FENG Yawei, XU Qiuxiao, LIU Bintao, WANG Yisheng, LI Chuanmo. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477

北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例

doi: 10.19509/j.cnki.dzkq.tb20220477
基金项目: 

国家自然科学基金项目 42072331

国家自然科学基金项目 U1906209

泰山学者工程专项经费 tstp20230626

详细信息
    通讯作者:

    康凤新, E-mail: kangfengxin@126.com

  • 中图分类号: P641.2

Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system

More Information
  • 摘要:

    为建立北方岩溶区水文地质参数系列, 提高岩溶地下水可采资源计算精度, 笔者团队于20世纪80年代开始, 在山东羊庄封闭式泉排型岩溶水系统开展了岩溶水均衡试验研究, 积累了40余年的监测试验数据。根据长期野外水均衡要素观测资料, 推导出裸露型、半覆盖型和覆盖型岩溶区降水入渗补给系数计算公式, 建立了岩溶区降水入渗补给系数α与降水量P和地下水位埋深D的相关方程, 以及可调控的最大降水入渗补给系数系列, 揭示了降水入渗补给过程与α变化机制。结果表明: α随水位埋深D的改变而改变, 每个降水量P段分别对应一个最大降水入渗补给系数αmax和最大降水入渗补给量即补给极限Gmax, 相应的水位埋深便是最佳水位埋深DcriticalD>Dcritical时, 包气带截留量随着水位埋深的增大而增大, α < αmax; D < Dcritical时, 地表径流量随着地下水位埋深的减小而增大, α < αmax。不同的降水量段对应不同的Dcritical, 降水量增大时, 对应的αmaxDcritical也增大。在任意水位埋深时, Gmax为蓄满产流临界降水量与包气带最大截流量之差。本研究解决了岩溶区降水入渗补给的关键科学问题, 即揭示降水入渗补给机制、建立降水入渗补给系数与降水量和水位埋深的定量关系, 提升了我国北方岩溶水资源基础性研究水平。

     

  • 图 1  羊庄岩溶水系统概念模型图

    Figure 1.  Conceptual model of the Yangzhuang karst water system

    图 2  范村奥陶系入渗试验场地形及监测试验设施分布图(位置见图 1)

    Figure 2.  Terrain and the distribution of monitoring and experimental facilities at the Fancun Ordovician infiltration experiment site

    图 3  羊庄岩溶水系统四水循环示意图

    P.次降水量;Rs.超渗产流量;Ro.蓄满产流量;Re.表层岩溶带水溢出量;E.包气带截留量;G.降水入渗补给岩溶地下水量;ΔH.水位上升值;μ.给水度;ΔQ.地下水径流量增量;Q1, Q2.次降水补给前、后地下水径流量

    Figure 3.  Schematic diagram of the cycle of four types of water in the Yangzhuang karst water system

    图 4  不同类型岩溶区地表产流临界雨量-水位埋深关系曲线

    Ro为蓄满产流的临界雨量;Rs为超渗产流的临界雨量

    Figure 4.  Relationships between the critical rainfall amount of surface runoff and the water table depth in different types of karst area

    图 5  裸露型岩溶区包气带最大截流量曲线确定过程

    1.“×”表示降水都被包气带截留,对岩溶水没有产生补给,即降水量小于包气带最大截留量Emax;2.“∨”表示降水量在满足包气带最大截留量后,又下渗补给岩溶地下水

    Figure 5.  Process determining the maximum interception curve of the vadose zone in the bare karst area

    图 6  不同类型岩溶区包气带最大截留量曲线

    Figure 6.  Maximum interception curves of the vadose zone in different types of karst area

    图 7  裸露型岩溶区降水入渗补给系数α=f(P, D)曲线图

    Figure 7.  Curves of infiltration recharge coefficient α=f(P, D) of single precipitation event in the bare karst area

    图 8  裸露型岩溶区降水入渗补给量G=f(P, D)曲线图

    Figure 8.  Curves of infiltration recharge volume G=f(P, D) of single precipitation event in the bare karst area

    图 9  羊庄岩溶水系统寒武系奥陶系地层多年平均地表径流系数、包气带截留系数及降水入渗补给系数

    Figure 9.  Multi-year average surface runoff coefficients, vadose zone interception coefficients and precipitation infiltration recharge coefficients in the Cambrian-Ordovician strata of Yangzhuang karst water system

    图 10  裸露型岩溶区不同水位埋深下多年平均降水入渗补给系数

    Figure 10.  Multi-year average annual precipitation infiltration recharge coefficients under different water table depths in the bare karst area

    图 11  裸露型岩溶区不同水位埋深下岩溶地下水补给过程及最大补给量/含水层最大可调蓄库容概念模型

    Figure 11.  Conceptual model of karst groundwater recharge processes and maximum recharge/maximum adjustable storage aquifer capacity under different water table depths in the bare karst region

    图 12  裸露型岩溶区不同水位埋深下岩溶地下水最大补给量/含水层最大可调蓄库容

    Figure 12.  Maximum recharge of karst groundwater and maximum adjustable storage capacity of karst groundwater at different water table depths in the bare karst area

    图 13  裸露型岩溶区定埋深下(D=15 m)降水量与岩溶地下水补给量关系曲线

    Figure 13.  Relationship between precipitation and karst groundwater recharge under a fixed water table depth (D=15 m) in the bare karst area

    图 14  羊庄岩溶水系统一年各月降水入渗补给系数

    Figure 14.  Precipitation infiltration recharge coefficients of the Yangzhuang karst water system for each month of a year

    图 15  岩溶地下水位(22号监测孔)-降水量-开采量动态

    H.岩溶地下水位;D.水位埋深;P.降水量;CD.累计均值离差;Q.岩溶地下水开采量

    Figure 15.  Relationship between karst groundwater level (monitoring well 22) and precipitation and exploitation dynamics

    表  1  羊庄岩溶水系统降水入渗试验场基本概况及主要观测设施(位置见图 1)

    Table  1.   Basic overview and main observation facilities of the precipitation infiltration experimental sites in the Yangzhuang karst water system

    试验场名 基本概况 主要监测试验设施
    地层 岩性 面积/km2 岩溶区类型 降水量 地表径流量 地下水位、包气带截流量、入渗补给量、泉流量
    羊庄 第四系,下伏奥陶系 黏质砂土、砂质黏土 0.01 覆盖 自记雨量计 量筒 地中计、重力水托盘、岩溶水观测孔、自记水位计、负压计、中子水分仪
    范村 中、下奥陶统 灰岩、泥灰岩、白云岩 0.60 半覆盖 矩形复合堰、自记水位计 岩溶水观测孔、矩形堰、自记水位计
    龙山头 上寒武统凤山组 灰岩 0.33 裸露 矩形复合堰、自记水位计 岩溶水观测孔、矩形堰、自记水位计
    小李庄 上寒武统长山组、崮山组 泥质灰岩 0.82 裸露 矩形复合堰、自记水位计 观测泉、矩形堰
    龙王堂 中寒武统张夏组 灰岩 1.09 裸露 矩形复合堰、自记水位计 观测泉、矩形堰
    东鳧山 中、下寒武统徐庄组、毛庄组 砂质页岩夹灰岩 19.00 裸露 矩形复合堰、自记水位计 观测泉、矩形堰
    青莲 下寒武统馒头组 灰岩、页岩 0.31 裸露 矩形复合堰、自记水位计 观测泉、矩形堰
    石嘴子 太古宙花岗岩 花岗岩 49.50 非岩溶 水库水尺 观测泉、矩形堰
    下载: 导出CSV

    表  2  羊庄岩溶水系统各岩性区多年平均年降水入渗补给系数

    Table  2.   Multi-year average annual precipitation infiltration recharge coefficients for various lithologic regions in the Yangzhuang karst water system

    地层 岩性 面积/km2 地表径流系数γ 包气带截留系数β 降水入渗补给系数α
    第四系覆盖层 黏质砂土、砂质黏土 122 0.065 1 0.782 1 0.152 8
    奥陶系 灰岩、泥灰岩、白云岩 16 0.085 0 0.708 1 0.206 9
    上寒武统凤山组 灰岩 22 0.055 9 0.717 4 0.226 7
    上寒武统长山组、崮山组 泥质灰岩 170 0.066 6 0.719 4 0.214 0
    中寒武统张夏组 鲕粒灰岩 125 0.155 2 0.633 7 0.211 1
    中寒武统徐庄组、下寒武统毛庄组 砂页岩夹灰岩 62 0.385 8 0.503 9 0.110 3
    下寒武统馒头组 灰岩、页岩 23 0.035 4 0.761 9 0.202 7
    新太古代变质岩、各期侵入岩 变粒岩、花岗岩、闪长岩 110 0.243 6 0.680 8 0.075 6
    寒武系、奥陶系综合 418 0.138 9 0.663 6 0.197 5
    全系统综合 650 0.142 7 0.688 8 0.168 5
    下载: 导出CSV

    表  3  羊庄岩溶水系统裸露型岩溶区不同水位埋深下多年平均降水入渗补给系数α

    Table  3.   Multi-year average annual precipitation infiltration recharge coefficients under different water table depths in the bare karst area of the Yangzhuang karst water system

    水位埋深/m 1 2 3 4 5 6 7 8 9
    多年平均α 0.123 4 0.152 9 0.179 2 0.198 3 0.209 7 0.217 7 0.226 4 0.236 2 0.243 8
    水位埋深/m 10 15 20 25 30 35 40 45 50
    多年平均α 0.250 9 0.274 1 0.285 3 0.293 1 0.294 9 0.293 4 0.287 4 0.082 9 0.279 3
    下载: 导出CSV

    表  4  裸露型岩溶区不同水位埋深下地下水最大补给量

    Table  4.   Maximum recharge of karst groundwater at different water table depths in the bare karst area

    地下水位埋深D/m 蓄满产流临界雨量Ro/mm 包气带最大截留量Emax/mm 地下水最大补给量Gmax/mm
    2 29.90 17.59 12.30
    5 50.87 25.55 25.31
    10 76.04 31.98 44.05
    15 96.20 35.84 60.36
    20 113.67 38.60 75.07
    25 129.37 40.75 88.62
    30 143.80 42.51 101.29
    下载: 导出CSV
  • [1] GOLDSCHEIDER N, CHEN Z, AULER A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1-17.
    [2] STEVANOVI Z. Karst waters in potable water supply: A global scale overview[J]. Environmental Earth Sciences, 2019, 78(23): 662. doi: 10.1007/s12665-019-8670-9
    [3] FORD D C, WILLIAMS P W. Karst geomorphology and hydrology[M]. [S. l. ]: Wiley, 2007: 562.
    [4] GOLDSCHEIDER N. A holistic approach to groundwater protection and ecosystem services in karst terrains[J]. Carbon Evapor, 2019, 34(4): 1241-1249. doi: 10.1007/s13146-019-00492-5
    [5] MINER W J, ADAMSON J K, ROCHAT P Y. Reconnaissance of the Diquini and Mariani springs and insights regarding the Massif de la Selle karst aquifer of Haiti[J]. Hydrogeology Journal, 2022, 30(5): 1349-1366. doi: 10.1007/s10040-022-02487-4
    [6] PLAN L, STADLER G. Case study: Klffer Spring-the major spring of the Vienna Water Supply(Austria)[M]//Anon. Groundwater Hydrology of Springs. [S. l. ]: [s. n. ], 2010: 411-427.
    [7] LA VIGNA F, MAZZA R, AMANTI M, et al. Groundwater of Rome[J]. Journal of Maps, 2016, 12(S1): 88-93.
    [8] SMIATEK G, KASPAR S, KUNSTMANN H. Hydrological climate change impact analysis for the Figeh spring near Damascus, Syria[J]. Journal of Hydrometeorology, 2013, 14(2): 577-593. doi: 10.1175/JHM-D-12-065.1
    [9] TIAN L, GAO Y, YANG G, et al. Isotopic tracers of sources of water for springs from the Edwards Aquifer, Central Texas, USA[J]. Hydrology Research, 2021, 52(3): 787-803. doi: 10.2166/nh.2021.011
    [10] ADAMSON J K, JEAN-BAPTISTE G, MINER W J. Summary of groundwater resources in Haiti[J]. Geoscience for the Public Good and Global Development: Toward a Sustainable Future, 2016, 520: 1-22.
    [11] ADAMSON J K, MINER W J, ROCHAT P Y, et al. Significance of river infiltration to the Port-au-Prince metropolitan region: A case study of two alluvial aquifers in Haiti[J]. Hydrogeology Journal, 2022, 30(5): 1367-1386. doi: 10.1007/s10040-022-02488-3
    [12] LUO M, CHEN Z, ZHOU H, et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal, 2018, 26(2): 629-639. doi: 10.1007/s10040-017-1664-3
    [13] 梁永平, 王维泰. 中国北方岩溶水系统划分与系统特征[J]. 地球学报, 2010, 31(6): 860-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm

    LIANG Y P, WANG W T. The division and characteristics of karst water systems in northern China[J]. Acta Geoscientia Sinica, 2010, 31(6): 860-868. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm
    [14] 梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301008.htm

    LIANG Y P, WANG W T, ZHAO C H, et al. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1): 34-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301008.htm
    [15] 李传谟, 康凤新. 岩溶水资源及增源增采模型[M]. 济南: 山东科技出版社, 1999.

    LI C M, KANG F X. Karst water resources and its recharge and exploitation augmenting model[M]. Jinan: Shandong Science and Technology Press, 1999. (in Chinese)
    [16] KANG F X, JIN M G, QIN P R. Sustainable yield of a karst aquifer system: A case study of Jinan springs in northern China[J]. Hydrogeology Journal, 2011, 19(4): 851-863. doi: 10.1007/s10040-011-0725-2
    [17] CHEN C C, GILLIG D, MCCARL B A. Effects of climatic change on a water dependent regional economy: A study of the Texas Edwards Aquifer[J]. Climatic Change, 2001, 49(4): 397-409. doi: 10.1023/A:1010617531401
    [18] WONG C I, MAHLER B J, MUSGROVE M, et al. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions[J]. Journal of Hydrology, 2012, 468: 159-172.
    [19] QIAN J Z, ZHAN H B, WU Y F, et al. Fractured-karst spring-flow protections: A case study in Jinan, China[J]. Hydrogeology Journal, 2006, 14(7): 1192-1205. doi: 10.1007/s10040-006-0061-0
    [20] BREDEHOEFT J D. It is the discharge[J]. Ground Water, 2007, 45(5): 523. doi: 10.1111/j.1745-6584.2007.00305.x
    [21] 张光辉, 费宇红, 申建梅, 等. 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200705015.htm

    ZHANG G H, FEI Y H, SHEN J M, et al. Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater[J]. Journal of Hydraulic Engineering, 2007, 38(5): 611-617. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200705015.htm
    [22] JONES I C, BANNER J L, HUMPHREY J D. Estimating recharge in a tropical karst aquifer[J]. Water Resources Research, 2000, 36(5): 1289-1299. doi: 10.1029/1999WR900358
    [23] 王树芳. 岩溶含水系统降水入渗补给研究进展[J]. 水文, 2014, 34(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm

    WANG S F. Progress in study on precipitation infiltration recharge of karstic groundwater system[J]. Journal of China Hydrology, 2014, 34(6): 1-8. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm
    [24] 尹德超, 罗明明, 张亮, 等. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质, 2016, 43(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm

    YIN D C, LUO M M, ZHANG L, et al. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 11-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm
    [25] 纪轶群, 王树芳, 韩征, 等. 北京岩溶水系统降水入渗系数研究[J]. 人民黄河, 2020, 42(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202002010.htm

    JI Y Q, WANG S F, HAN Z, et al. Researchon infiltration coefficient of precipitation in karst area of Beijing[J]. Yellow River, 2020, 42(2): 38-41. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202002010.htm
    [26] 易连兴, 夏日元, 王喆, 等. 岩溶峰丛洼地区降水入渗系数: 以寨底岩溶地下河流域为例[J]. 中国岩溶, 2017, 36(4): 512-517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704012.htm

    YI L X, XIA R Y, WANG Z, et al. Infiltration coefficient of precipitation in karst peak-cluster depression area: A case study of Zhaidi karst underground river basin[J]. Carsologica Sinica, 2017, 36(4): 512-517. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704012.htm
    [27] 申豪勇, 梁永平, 唐春雷, 等. 应用氯量平衡法估算娘子关泉域典型岩溶区的降水入渗系数[J]. 水文地质工程地质, 2018, 45(6): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806005.htm

    SHEN H Y, LIANG Y P, TANG C L, et al. Estimation of the infiltration coefficient based on chloride mass balance in a typical karst region of the Niangziguan spring area[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 31-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806005.htm
    [28] WONG C I, MAHLER B J, MUSGROVE M, et al. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions[J]. Journal of Hydrology, 2012, 468/469: 159-172. doi: 10.1016/j.jhydrol.2012.08.030
    [29] ALLEY W M, HEALY R M, LaBAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296: 1985-1990. doi: 10.1126/science.1067123
    [30] 崔虎群, 李文鹏, 康卫东, 等. 黑河中游不同灌溉方式下地下水入渗补给特征研究[J]. 水文地质工程地质, 2022, 49(3): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203003.htm

    CUI H Q, LI W P, KANG W D, et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 22-28. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203003.htm
    [31] LI X Y, CONTRERAS S, SOLÉ-BENET A, et al. Controls of infiltration-runoff processes in Mediterranean karst rangelands in SE Spain[J]. Catena, 2011, 86(2): 98-109. doi: 10.1016/j.catena.2011.03.003
    [32] ALLEY W M, REILLY T E, FRANKE O L. Sustainability of ground-water resources[R]. [S. l. ]: U.S. Geological Survey Circular, 1999: 1186.
    [33] BREDEHOEFT J D, DURBIN T. Ground water development - the time to full capture problem[J]. Ground Water, 2010, 47(4): 506-514.
    [34] BROWN L J, DRAVID P N, HUDSON N A, et al. Sustainable groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand[J]. Hydrogeology Journal, 1999, 7(5): 440-453. doi: 10.1007/s100400050217
    [35] CONKLING H. Utilization of ground-water storage in stream system development[J]. Transactions of the American Society of Civil Engineers, 1946, 111(1): 275-305.
    [36] HEALY R W, COOK P G. Using groundwater levels to estimate recharge[J]. Hydrogeology Journal, 2002, 10(1): 91-109. doi: 10.1007/s10040-001-0178-0
    [37] HEALY R W. Estimating groundwater recharge[M]. Cambridge: Cambridge University Press, 2010.
    [38] SEWARD P, XU Y, BRENDONCK L. Sustainable groundwater use, the capture principle, and adaptive management[J]. Water S. A, 2006, 32(4): 473-482.
    [39] SOPHOCLEOUS M, DEVLIN J F. Discussion of paper "The water budget myth revised: Why hydrogeologist model"[J]. Ground Water, 2004, 42(4): 618. doi: 10.1111/j.1745-6584.2004.tb02630.x
    [40] STEPHENS D B. Also consider the recharge[J]. Ground Water, 2009, 47(1): 2-3.
    [41] 刘元晴, 文冬光, 吕琳, 等. 沂蒙山区典型断陷盆地岩溶地下水系统特征: 以莱芜盆地为例[J]. 地质科技通报, 2022, 41(1): 157-167. doi: 10.19509/j.cnki.dzkq.2022.0013

    LIU Y Q, WEN D G, LV L, et al. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng Mountain area: A case study of Laiwu Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 157-167. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0013
    [42] 郭蕾蕾, 魏良帅, 黄安邦, 等. 乌蒙山地区岩溶地下水流系统结构及其找水应用[J]. 地质科技通报, 2022, 41(1): 146-156. doi: 10.19509/j.cnki.dzkq.2022.0025

    GUO L L, WEI L S, HUANG A B, et al. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-156. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0025
    [43] YUAN D X. Karst of China[M]. Beijing: Geological Publishing House, 1991.
    [44] 梁永平, 申豪勇, 赵春红, 等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3): 363-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm

    LIANG Y P, SHEN H Y, ZHAO C H, et al. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3): 363-380. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  40
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2023-01-05

目录

    /

    返回文章
    返回