留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降雨入渗条件下堆积体边坡致灾因子试验分析

翟淑花 于家烁 齐干 刘欢欢 冒建 王云涛

翟淑花, 于家烁, 齐干, 刘欢欢, 冒建, 王云涛. 降雨入渗条件下堆积体边坡致灾因子试验分析[J]. 地质科技通报, 2023, 42(3): 9-15. doi: 10.19509/j.cnki.dzkq.tb20220488
引用本文: 翟淑花, 于家烁, 齐干, 刘欢欢, 冒建, 王云涛. 降雨入渗条件下堆积体边坡致灾因子试验分析[J]. 地质科技通报, 2023, 42(3): 9-15. doi: 10.19509/j.cnki.dzkq.tb20220488
Zhai Shuhua, Yu Jiashuo, Qi Gan, Liu Huanhuan, Mao Jian, Wang Yuntao. Triggering factor analysis of deposit slope under rainfall infiltration based on laboratory experiments[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 9-15. doi: 10.19509/j.cnki.dzkq.tb20220488
Citation: Zhai Shuhua, Yu Jiashuo, Qi Gan, Liu Huanhuan, Mao Jian, Wang Yuntao. Triggering factor analysis of deposit slope under rainfall infiltration based on laboratory experiments[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 9-15. doi: 10.19509/j.cnki.dzkq.tb20220488

降雨入渗条件下堆积体边坡致灾因子试验分析

doi: 10.19509/j.cnki.dzkq.tb20220488
基金项目: 

北京市自然科学基金项目 8202026

北京市自然科学基金项目 8182022

国家重点研发计划课题 2019YFC1509604

详细信息
    作者简介:

    翟淑花(1979—),女,正高级工程师,主要从事地质灾害监测预警研究工作。E-mail: zhaishuhuahbu@163.com

  • 中图分类号: P642.22

Triggering factor analysis of deposit slope under rainfall infiltration based on laboratory experiments

  • 摘要:

    堆积体边坡稳定性判别和分析是地质灾害防治重点,分别以密实细颗粒边坡和松散碎石体边坡为例,开展了降雨入渗作用下坡体失稳室内模型试验,系统分析了密实度、物质组成、坡度以及植被覆盖度对边坡稳定性和降雨阈值的影响。结果表明,降雨入渗作用下,物质组成较均匀、密实度高的细颗粒边坡稳定性较好,坡体失稳降雨阈值高,致灾性较低;物质组成不均、松散碎石体边坡相较于密实细颗粒边坡更容易失稳破坏,含石量对坡体稳定性的影响要大于坡体坡度;坡体失稳临界降雨量随植被覆盖度的增大先升高后降低,即当降雨入渗致使边坡土体过饱和时,较高的植被覆盖度反而会由于植被根系的强发育,触发坡体和植被整体破坏,并加大坡体致灾能力。研究成果可以为堆积体边坡失稳机理研究及其稳定性评价提供理论依据。

     

  • 图 1  试验槽及降雨机布设图

    Figure 1.  Layout of the flume and rainfall machine

    图 2  坡度40°密实坡体模型及传感器布设图(单位: mm)

    Figure 2.  Model and monitoring layout of the dense slope with angle of 40°

    图 3  坡度40°密实坡体失稳模式

    Figure 3.  Instability mode of the dense slope with angle of 40°

    图 4  降雨量-体积含水率动态变化图

    Figure 4.  Volume water content change under different rainfall events

    图 5  降雨量-孔隙水压力动态变化图

    Figure 5.  Pore water pressure change under different rainfall events

    图 6  坡度40°和50°密实坡体模型及传感器布设图(单位: mm)

    Figure 6.  Model and monitoring layout of dense slopes with angles of 40° and 50°

    图 7  40°(a)和50°(b)密实坡体失稳模式

    Figure 7.  Instability mode of dense slopes with angles of 40° (a) and 50°(b)

    图 8  不同坡度边坡的降雨量-体积含水率动态变化图

    Figure 8.  Dynamic change of rainfall and volume water content under slopes with different angles

    图 9  不同坡度边坡的降雨量-孔隙水压力动态变化图

    Figure 9.  Dynamic clange of rainfall and pore water pressure under slopes with different angles

    图 10  松散堆积体模型试验俯视图(单位: mm)

    Figure 10.  Model and monitoring layout of the loose slope

    图 11  1~9号试验边坡坡体破坏前(a, c, e)、后(b, d, f)形态对比图

    Figure 11.  Comparison of slopes of No.1 to No.9 configurations before (a, c, e) and after (b, d, f) failure

    图 12  不同坡度及碎石比作用下坡体失稳临界累计降雨量

    Figure 12.  Critical rainfall of slope instability under different slopes and gravel ratios

    图 13  碎石比为0(a), 20%(b), 50%(c)时降雨量、土壤含水率、孔隙水压力变化图

    Figure 13.  Variation of rainfall, soil water content and pore water pressure at a gravel ratio of 0(a), 20%(b) and 50%(c)

    图 14  不同植被覆盖度(0, 15%, 30%, 60%)坡体破坏前(a, c)、后(b, d)图

    Figure 14.  Comparison of slopes before (a, c) and after (b, d) failure with different vegetation coverage of 0, 15%, 30%, 60%

    图 15  不同植被覆盖度下堆积体边坡临界降雨量

    Figure 15.  Critical rainfall map of accumulation slope under different vegetation coverage

    表  1  松散堆积体室内试验设计

    Table  1.   Experimental design of the loose accumulation slope

    序号 坡度/(°) 碎石比/%
    1 50 50
    2 60 20
    3 40 0
    4 40 50
    5 40 20
    6 50 0
    7 60 50
    8 50 20
    9 60 0
    下载: 导出CSV
  • [1] 魏玉杰, 夏金文, 蔡崇法. 松散堆积体侵蚀特性研究概述[C]//佚名. 海峡两岸红壤区水土保持学术研讨会. [S. l.]: [s. n.], 2015: 283-288.

    Wei Y J, Xia J W, Cai C F. Overview of research on erosion characteristics of loose deposits[C]//Anon. Symposium on Soil and Water Conservation in Red Soil Regions Across the Straits. [S. l.]: [s. n.], 2015: 283-288(in Chinese with English abstract).
    [2] 杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069

    Yang D F, Hu X L, Xu C, et al. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
    [3] 董辉, 李智飞, 蒋秀姿, 等. 强降雨作用下碎石土斜坡室内模型试验研究[J]. 安全与环境学报, 2016, 16(4): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201604050.htm

    Dong H, Li Z F, Jiang X Z, et al. Model test research on the gravel-cluttered soil slope under the heavy artificial rainfall condition[J]. Journal of Safety and Environment, 2016, 16(4): 236-241(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201604050.htm
    [4] 石振明, 赵思奕, 苏越. 降雨作用下堆积层滑坡的模型试验研究[J]. 水文地质工程地质, 2016, 43(4): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604024.htm

    Shi Z M, Zhao S Y, Su Y. An experimental study of the deposit slope failure caused by rainfall[J]. Hydrogeological & Engineering Geology, 2016, 43(4): 135-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604024.htm
    [5] 李继兴, 严松, 杨春健, 等. 泥质砂岩残积土边坡降雨冲刷特性[J]. 地质科技通报, 2022, 41(2): 26-33. doi: 10.19509/j.cnki.dzkq.2022.0051

    Li J X, Yan S, Yang C J, et al. Rainfall erosion characteristics of argillaceous sandstone residual soil slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 26-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0051
    [6] 梁润娥. 降雨入渗堆积层滑坡的稳定性分析与评价[J]. 地质灾害与环境保护, 2020, 31(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB202002003.htm

    Lang R E. Analysis and evaluation of rainfall infiltration accumulation layer landslide[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(2): 14-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB202002003.htm
    [7] 谭明健, 周春梅, 孙东, 等. 软硬互层顺层岩质边坡破坏试验[J]. 地质科技通报, 2022, 41(2): 274-281. doi: 10.19509/j.cnki.dzkq.2021.0096

    Tan M J, Zhou C M, Sun D, et al. Failure experiment of soft-hard interlayer bedding rock slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 274-281(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0096
    [8] 贺可强. 大型堆积层滑坡的多层滑移规律分析[J]. 金属矿山, 1998, 26(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS807.004.htm

    He K Q. An analysis on the multilayered slide law of the large scale accumulative landslides[J]. Metal Mine, 1998, 26(7): 15-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS807.004.htm
    [9] Lee K, Suk J, Kim H, et al. Modeling of rainfall-induced landslides using a full-scale flume test[J]. Landslides, 2021, 18: 1153-1162.
    [10] Cogan J, Gratchev I. A study on the effect of rainfall and slope characteristics on landslide initiation by means of flume tests[J]. Landslides, 2019, 16: 2369-2379. http://www.xueshufan.com/publication/2969313895
    [11] Macciotta R, Hendry M, Martin C D. Developing an early warning system for a very slow landslide based on displacement monitoring[J]. Natural Hazards, 2015, 81(2): 887-907. http://www.onacademic.com/detail/journal_1000038583245910_440a.html
    [12] Iverson R M, Reid M E, Iverson N R, et al. Acute sensitivity of landslide rates to initial soil porosity[J]. Science, 2000, 290: 513-516. doi: 10.1126/science.290.5491.513
    [13] Huang C C, Ju Y J, Hu L K, et al. Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures[J]. J. Hydrol., 2009, 370: 39-51. http://www.sciencedirect.com/science/article/pii/S0022169409001401/
    [14] Cui Y, Guo C, Zhou X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall[J]. J. Mt. Sci., 2017, 14(3): 417-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkxxb-e201703001
    [15] Zhang S, Xu Q, Zhang Q. Failure characteristics of gently inclined shallow landslides in Nanjiang, southwest of China[J]. Eng. Geol., 2017, 217: 1-11. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0013795216307062&originContentFamily=serial&_origin=article&_ts=1490492112&md5=c68f08a343871aaa0b9caf9b19e0fbb0
    [16] Wang G, Sassa K. Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content[J]. Eng. Geol., 2003, 69: 109-125. http://cyber.sci-hub.se/MTAuMTAxNi9zMDAxMy03OTUyKDAyKTAwMjY4LTU=/wang2003.pdf?download=true
    [17] 李焕强, 孙红月, 孙新民, 等. 降雨入渗对边坡性状影响的模型实验研究[J]. 岩土工程学报, 2009, 31(3): 589-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904020.htm

    Li H Q, Sun H Y, Sun X M, et al. Influence of rainfall infiltration on slopes by physical model test[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 589-594(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904020.htm
    [18] 林鸿州, 于玉贞, 李广信, 等. 降雨特性对土质边坡失稳的影响[J]. 岩石力学与工程学报, 2009, 28(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901030.htm

    Lin H Z, Yu Y Z, Li G X, et al. Influence of rainfall characteristics on soil slope failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 198-204(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901030.htm
    [19] 陈天健, 蔡和伦, 黄彦荣, 等. 人工降雨模型试验研究降雨入渗对滑坡类型之影响[J]. 水土保持研究, 2012, 19(1): 254-257. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201201055.htm

    Chen T J, Cai H L, Huang Y R, et al. Slope failure mode related to soil infiltration-laboratory rainfall model test[J]. Research of Soil and Water Conservation, 2012, 19(1): 254-257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201201055.htm
    [20] Zhou Z, Wang H G, Fu H L. Influences of rainfall infiltration on stability of accumulation slope by in-situ monitoring test[J]. Journal of Central South University of Technology, 2009, 16(2): 297-302. http://www.zndxzk.com.cn/down/paperDown.aspx?id=59475
    [21] 许建聪, 尚岳全. 碎石土滑坡的因素敏感性计算分析[J]. 岩土力学, 2007, 28(10): 2046-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710006.htm

    Xu J C, Shang Y Q. Sensitivity analysis of influencing factors of debris landslide[J]. Rock and Soil Mechanics, 2007, 28(10): 2046-2051(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710006.htm
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  482
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02

目录

    /

    返回文章
    返回