留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北省2019-2021年岩溶碳汇估算及其驱动因子分析

王懿洁 马传明 郭静 党慧慧 黄鹏 范威

王懿洁, 马传明, 郭静, 党慧慧, 黄鹏, 范威. 湖北省2019-2021年岩溶碳汇估算及其驱动因子分析[J]. 地质科技通报, 2024, 43(2): 330-343. doi: 10.19509/j.cnki.dzkq.tb20220534
引用本文: 王懿洁, 马传明, 郭静, 党慧慧, 黄鹏, 范威. 湖北省2019-2021年岩溶碳汇估算及其驱动因子分析[J]. 地质科技通报, 2024, 43(2): 330-343. doi: 10.19509/j.cnki.dzkq.tb20220534
WANG Yijie, MA Chuanming, GUO Jing, DANG Huihui, HUANG Peng, FAN Wei. Estimation of karst carbon sinks and analysis of their driving factors in Hubei Province from 2019 to 2021[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 330-343. doi: 10.19509/j.cnki.dzkq.tb20220534
Citation: WANG Yijie, MA Chuanming, GUO Jing, DANG Huihui, HUANG Peng, FAN Wei. Estimation of karst carbon sinks and analysis of their driving factors in Hubei Province from 2019 to 2021[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 330-343. doi: 10.19509/j.cnki.dzkq.tb20220534

湖北省2019-2021年岩溶碳汇估算及其驱动因子分析

doi: 10.19509/j.cnki.dzkq.tb20220534
基金项目: 

湖北省地质局项目“湖北地下水-土壤生态环境调查、监测与修复研究” KJ2022-13

湖北省地质局科技项目 

详细信息
    作者简介:

    王懿洁, E-mail: 1316381077@qq.com

    通讯作者:

    马传明, E-mail: bjmcm@163.com

  • 中图分类号: P642.25

Estimation of karst carbon sinks and analysis of their driving factors in Hubei Province from 2019 to 2021

More Information
  • 摘要:

    碳酸盐岩在水循环过程中的碳汇效应显著,加之岩溶地貌在我国分布广泛,所以探求岩溶碳汇潜力的研究对制定区域增汇策略具有重要意义。选取位于西南岩溶区的湖北省为重点研究区域,基于水化学径流法及入渗-平衡化学法进行定量化计算和比较,利用ArcGIS空间分析技术整体评估湖北省2019-2021年岩溶碳汇的空间格局与量级,探索更适宜应用于区域尺度的岩溶作用碳汇估算方法,综合分析岩溶碳汇的驱动因子,发掘更大的增汇潜力。研究结果表明:(1)采用入渗-平衡化学法估算3 a碳汇强度大小为2020年>2019年>2021年,丰水年(2020年)岩溶碳汇总量约为枯水年(2019年)的6倍,3 a年均碳汇强度为12.84 t/(km2·a),碳汇总量达163.89×104 t/a;(2)相较于水化学径流法,入渗-平衡化学法计算结果更为准确,获取数据资料较为简单,大小空间尺度都具有一定的普适性;(3)碳汇作用变化是高度动态的,气候变化下变化幅度主要由径流深决定,碳汇强度随径流深增大而变强,土地利用类型调控着岩溶作用碳汇强度;(4)鄂西南地区岩溶作用强烈,可建立岩溶碳汇试验区,定量评估人工干预所带来的增汇效果。研究结果不仅提供了精确易行的岩溶碳汇估算方法,而且确定了湖北省岩溶碳汇的量级与空间格局,摸清了碳汇强度驱动因子的共同耦合作用,体现了岩溶碳汇的人为可调控性以及复杂性,进一步为环境保护政策、人工增汇措施的制定提供了可靠的科学依据。

     

  • 图 1  湖北省碳酸盐岩分布图(据文献[17]修改)

    Figure 1.  Map showing the distribution of different types of carbonate rock in Hubei Province

    图 2  2021年岩溶碳汇强度、碳汇总量分级图

    Figure 2.  Graduated map of karst carbon sink intensity and total carbon sink in 2021

    图 3  湖北省2019-2021年径流深分布图

    Figure 3.  Map showing the distribution of runoff depth in Hubei Province from 2019 to 2021

    图 4  湖北省土壤PCO2分布图

    Figure 4.  Map showing the distribution of soil PCO2 in Hubei Province

    图 5  2019-2021年湖北省岩溶碳汇强度空间分布图

    Figure 5.  Map showing the spatial distribution of karst carbon sink intensity in Hubei Province from 2019 to 2021

    图 6  径流深、土壤PCO2与碳汇强度的相关性

    Figure 6.  Correlation of runoff depth, soil PCO2 with carbon sink intensity

    图 7  湖北省各气象站点2019-2021年降雨量、蒸发量、径流深、碳汇强度变化

    Figure 7.  Changes in rainfall, evaporation, runoff depth and carbon sink intensity at meteorological stations in Hubei Province from 2019 to 2021

    图 8  湖北省土地利用类型分布图

    Figure 8.  Map showing the distribution of land use types in Hubei Province

    图 9  湖北省不同土地利用类型用地碳汇强度与径流深关系

    Figure 9.  Relationship between carbon sink intensity and runoff depth for different land use types in Hubei Province

    表  1  2021年湖北省岩溶碳汇计算

    Table  1.   Calculation of karst carbon sinks in Hubei Province for 2021

    含水系统分区代码 含水系统分区 径流量/108 m3 分区面积/ km2 径流模数/ (s-1·km2) 碳汇强度/ (t·km-2·a-1) 碳酸盐岩面积/km2 碳汇总量/ (104 t·a-1)
    GF-2-3 长江中上游干流区 4.41 1 884.03 23.43 23.68 824.23 1.95
    GF-2-4 乌江流域区 6.43 4 240.82 15.16 16.2 3 952.92 6.40
    GF-3-1-1-2-1 丹江口以上镇安基岩裂隙含水系统区 0.04 599.25 0.69 0.78 403.68 0.03
    GF-3-1-1-3-1 丹江口以上宁陕-白河寒武系-奥陶系岩溶含水系统区 1.33 3 691.38 3.60 8.22 2 554.78 2.10
    GF-3-1-1-4-1 丹江口以上安康寒武岩溶含水系统区 0.65 6 645.41 0.98 1.02 2 178.51 0.22
    GF-3-1-1-6-1 丹江口以上十堰基岩裂隙含水系统区 0.80 10 268.52 0.78 1.51 409.31 0.06
    GF-3-1-2-1-1 巴东至宜昌巴东三叠系岩溶含水系统区 2.94 3 753.53 7.84 13.55 1 361.5 1.84
    GF-3-1-2-2-1 巴东至宜昌兴山南华系裂隙含水系统区 2.37 7 364.95 3.22 4.55 4 733.4 2.15
    GF-3-1-3-1-1 丹江口以下至荆门流马桥岩浆岩-变质岩基岩裂隙含水系统区 0.46 3 127.13 1.48 2.36 1 394.08 0.33
    GF-3-1-3-2-1 丹江口以下荆门干流南漳碎屑岩裂隙含水系统区 1.39 11 366.48 1.23 3.18 3 467.13 1.10
    GF-3-1-3-3-1 丹江口以下至荆门干流京山碎屑岩裂隙含水系统区 2.96 5 296.26 5.59 17.46 2 351.24 4.11
    GF-3-1-4-1-1 清江利川三叠系岩溶含水系统区 5.30 3 435.46 15.43 17.56 621.54 1.09
    GF-3-1-4-2-1 清江野三关三叠系岩溶含水系统区 21.76 9 944.01 21.89 18.33 6 038.67 11.07
    GF-3-1-4-3-1 清江长阳-五峰寒武系岩溶含水系统区 6.79 3 911.67 17.36 27.93 1 751.98 4.89
    GF-3-1-5-1-1 宜昌至荆门左岸远安岩溶含水系统区 4.81 6 400.79 7.51 12.7 999.56 1.27
    GF-3-1-6-1-1 武汉至湖口左岸随州岩浆岩-变质岩基岩裂隙含水系统区 6.39 25 338.33 2.52 4.6 285.79 0.13
    GF-3-1-7-1-1 城陵姬至湖口右岸咸宁碎屑岩裂隙含水系统区 4.59 8 831.46 5.20 7.53 2 061.77 1.55
    GF-3-1-7-2-1 城陵姬至湖口右岸黄石碎屑岩裂隙含水系统区 2.20 4 422.41 4.99 6.91 844.9 0.58
    GF-3-4 洞庭湖水系区 13.14 6 903.59 19.03 22.71 6 325.24 14.36
    湖北省 88.76 127 425.48 8.31 12.98 42 560.23 55.23
    下载: 导出CSV

    表  2  2019-2021年湖北省岩溶碳汇计算

    Table  2.   Karst carbon sink calculations in Hubei Province from 2019 to 2021

    年份 温度/℃ 径流深/(mm·a-1) 碳汇强度/(t·km-2·a-1) 碳酸盐岩面积/km2 碳汇总量/(104 t·a-1) 3 a年均碳汇强度/(t·km-2·a-1)
    2019 17.1 172.46 4.28 42 560.23 18.21
    2020 16.8 808.23 23.51 42 560.23 100.06 12.84
    2021 17.4 350.82 10.72 42 560.23 45.62
    下载: 导出CSV
  • [1] GOLDSCHEIDER N, CHEN Z, AULER A S, et al.Global distribution of carbonate rocks and karst water resources[J].Hydrogeology Journal, 2020, 28(5):1661-1677. doi: 10.1007/s10040-020-02139-5
    [2] LIU Z, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Ence Bulletin, 2015, 60(2): 182-191.
    [3] LI H W, WANG S J, BAI X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Sci. Total. Environ., 2018, 643: 157-170. doi: 10.1016/j.scitotenv.2018.06.196
    [4] 吴泽燕. 广西果化妙冠岩溶关键带碳汇效应研究[D]. 武汉: 中国地质大学(武汉), 2021.

    WU Z Y. Carbon sink effect of Miaoguang karst critical zone in Guohua, Guangxi[D]. Wuhan: China University Of Geosciences(Wuhan), 2021. (in Chinese with English abstract)
    [5] LIU Z, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007
    [6] 王文娟, 蓝芙宁, 蒋忠诚, 等. 湖南大龙洞流域不同岩性不同土地利用类型条件下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1): 29-33. doi: 10.3969/j.issn.1001-4810.2013.01.005

    WANG W J, LAN F N, JIANG Z C, et al. Corrosion rate of carbonate tablet under diverse land use and lithology in the Dalongdong Basin, Hunan[J]. Carsologica Sinica, 2013, 32(1): 29-33. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2013.01.005
    [7] 覃小群, 刘朋雨, 黄奇波, 等. 珠江流域岩石风化作用消耗大气/土壤CO2量的估算[J]. 地球学报, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304009.htm

    QIN X Q, LIU P Y, HUANG Q B, et al. Estimation of atmospheric/soil CO2 consumption by rock weathering in the Pearl River Valley[J]. Acta Geoscientica Sinica, 2013, 34(4): 455-462. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304009.htm
    [8] 曹星星, 吴攀, 杨诗笛, 等. 贵州威宁草海流域地下水水化学特征及无机碳通量估算[J]. 环境科学, 2021, 42(4): 1761-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104019.htm

    CAO X X, WU P, YANG S D, et al. Hydrochemistry characteristics and estimation of the dissolved inorganic carbon flux in the Caohai Lake wetland catchment of Guizhou Province[J]. Environmental Sciences, 2021, 42(4): 1761-1771. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104019.htm
    [9] 张连凯, 覃小群, 刘朋雨, 等. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90: 1933-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608021.htm

    ZHANG L K, QIN X Q, LIU P Y, et al. Chemical denudation rate and atmospheric CO2 consumption by H2CO3 and H2SO4 in the Yangtze River catchment[J]. Acta Geologica Sinica, 2016, 90: 1933-1944. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608021.htm
    [10] DONG S C, LIU B W, LEI J H, et al. Carbon balance model of groundwater system: A field application[J]. Journal of Hydrology, 2022, 610: 127845. doi: 10.1016/j.jhydrol.2022.127845
    [11] YU J, YAN J, YANG W, et al. Hydrogeochemical characterization of a possible carbon sink from shallow saline-alkaline groundwater in the eastern Hetao Basin of Inner Mongolia in China[J]. Environmental Science(Processes and Impacts), 2021, 32: 344-356.
    [12] LIU J, XU Z, ZHANG D, et al. Effects of carbon dioxide enrichment and nitrogen addition on inorganic carbon leaching in subtropical model forest ecosystems[J]. Ecosystems, 2011, 14(5): 683-697. doi: 10.1007/s10021-011-9438-6
    [13] 曾成, 赵敏, 杨睿, 等. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较: 以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201401020.htm

    ZENG C, ZHAO M, YANG R, et al. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 106-111. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201401020.htm
    [14] 刘再华. 岩溶作用及其碳汇强度计算的"入渗-平衡化学法": 兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4): 379-382. doi: 10.3969/j.issn.1001-4810.2011.04.005

    LIU Z H. "Method of maximum potential dissolution" to calculate the intensity of karst process and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test[J]. Carsologica Sinica, 2011, 30(4): 379-382. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2011.04.005
    [15] 范威, 于瑶, 江越潇, 等. 湖北省地下水流系统划分研究[J]. 资源环境与工程, 2020, 34(4): 565-570. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004017.htm

    FAN W, YU Y, JIANG Y X, et al. Current situation and consideration of groundwater monitoring in Hubei Province[J]. Resources Environment & Engineering, 2020, 34(4): 565-570. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004017.htm
    [16] 牛俊强, 郭昆, 李寅, 等. 湖北省地下水监测现状及思考[J]. 资源环境与工程, 2021, 35(4): 467-471. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202104010.htm

    NIU J Q, GUO K, LI Y, et al. Study on groundwater flow system division in Hubei Province[J]. Resources Environment & Engineering, 2021, 35(4): 467-471. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202104010.htm
    [17] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 12(2): 147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198302008.htm

    LI D T, LUO Y. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 12(2): 147. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198302008.htm
    [18] DREYBRODT W. Processes in karst systems: Springer Series in Physical Environment[M]. Heidelberg: Springer, 1988: 288.
    [19] GOMBERT P. Role of karstic dissolution in global carbon cycle[J]. Glob Planet Change, 2002, 33: 177-184. doi: 10.1016/S0921-8181(02)00069-3
    [20] 邰治钦, 曾成, 肖时珍, 等. 近27a来典型白云岩流域岩溶碳汇变化及其调控机制: 以贵州施秉黄洲河流域为例[J]. 中国岩溶, 2021, 40(4): 625-635. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104009.htm

    SHAN Z Q, ZENG C, XIAO S Z, et al. Variation and rgulation mechanism of karst carbon sink in typical dolomite Basin in recent 27 years: A case study of the Huangzhouhe Basin in Shibing, Guizhou[J]. Carsologica Sinica, 2021, 40(4): 625-635. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104009.htm
    [21] GAILLARDET J, CALMELS D, ROMERO-MUJALLI G, et al. Global climate control on carbonate weathering intensity[J]. Chemical Geology, 2019, 527: 118762. doi: 10.1016/j.chemgeo.2018.05.009
    [22] GODSEY S E, KIRCHNER J W, CLOW D W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments[J]. Hydrological Processes, 2009, 23(13): 1844-1864. doi: 10.1002/hyp.7315
    [23] 罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    LUO W J, YANG K P, WANG Y W, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Scienceand Technology, 2022, 41(3): 208-214. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0088
    [24] ROMERO-MUJALLI G J, HARTMANN B. Temperature and CO2 dependency of global carbonate weathering fluxes: Implications for future carbonate weathering research[J]. Chemical Geology, 2018, 527: 118874.
    [25] 曾成, 赵敏, 杨睿, 等. 贵州典型岩溶流域水循环驱动的岩溶碳汇通量及其主控因素分析[J]. 地球与环境, 2017, 45(1): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701011.htm

    ZENG C, ZHAO M, YANG R, et al. Karst related carbon sink flux driven by water cycle in typical karst catchments of Guizhou Province and its main controlling factors[J]. Earth and Environment, 2017, 45(1): 74-83. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701011.htm
    [26] 李汇文, 王世杰, 白晓永, 等. 气候变化及生态恢复对喀斯特槽谷碳酸盐岩风化碳汇的影响评估[J]. 生态学报, 2019, 39(16): 6158-6172. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201916040.htm

    LI H W, WANG S J, BAI X Y, et al. Effects of climate change and ecological restoration on carbonate rock weathering carbon sequestration in the karst valley of Southwest China[J]. Acta Ecologica Sinica, 2019, 39(16): 6158-6172. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201916040.htm
    [27] 曾思博. 西南地区近40年气候变化及其对岩溶作用碳汇的影响研究[D]. 重庆: 西南大学, 2017.

    ZENG S B. Climate change characteristics of karst area in SW China and its impacts on karst-related carbon sink during recent 40 years[D]. Chongqing: Southwest University, 2017. (in Chinese with English abstract)
    [28] 孙从建, 郑振婧, 李新功, 等. 黄土塬面保护区潜在蒸发量时空变化及其与气象、环流因子关系分析[J]. 自然资源学报, 2020, 35(4): 857-868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004009.htm

    SUN C J, ZHENG Z J, LI X G, et al. Spatio-temporal distribution of the potential evapotranspiration and its controlling factors in the tableland protected region of the Loess Plateau[J]. Journal of Natural Resources, 2020, 35(4): 857-868. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202004009.htm
    [29] 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素[J]. 地质论评, 2010, 56(1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001021.htm

    ZHANG C. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors[J]. Geological Review, 2010, 56(1): 136-140. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001021.htm
    [30] 覃小群, 蒙荣国, 莫日生. 土地覆盖对岩溶地下河碳汇的影响: 以广西打狗河流域为例[J]. 中国岩溶, 2011, 30(4): 372-378. doi: 10.3969/j.issn.1001-4810.2011.04.004

    QIN X Q, MENG R G, MO R S. Influence of land covers on carbon sink of underground river: A case in the Dagouhe Basin in Guangxi[J]. Carsologica Sinica, 2011, 30(4): 372-378. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2011.04.004
    [31] ZENG C, LIU Z, ZHAO M, et al. Hydrologically-driven variations in the karstn-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in southwest China[J]. Journal of Hydrology, 2016, 533: 74-90. doi: 10.1016/j.jhydrol.2015.11.049
    [32] LIU Z, LI Q, SUN H, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337: 207-223.
    [33] 曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述[J]. 中国岩溶, 2016, 35(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201602004.htm

    ZENG S B, JIANG Y J. Impact of land-use and land-over change on the carbon sink produced by karst processes: A review[J]. Carsologica Sinica, 2016, 35(1): 1-4. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201602004.htm
    [34] 赵敏, 曾成, 刘再华. 土地利用变化对岩溶地下水溶解无机碳及其稳定同位素组成的影响[J]. 地球化学, 2009, 38(6): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906009.htm

    ZHAO M, ZENG C, LIU Z H. Influence of land use change on dissolved inorganic carbon and stable isotopic compositions of karst groundwater[J]. Geochimica, 2009, 38(6): 565-572. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906009.htm
    [35] 罗明明, 姜光辉. 基于岩溶水动态模拟的补给面积计算方法[J]. 地质科技通报, 2022, 41(5): 293-300. doi: 10.19509/j.cnki.dzkq.2022.0184

    LUO M M, JIANG G H. Estimation method of recharge area based on hydrograph simulation of karst water[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 293-300. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0184
    [36] 张春来, 黄芬, 蒲俊兵, 等. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202104006.htm

    ZHANG C L, HUANG F, PU J B, et al. Estimation of karst carbon sink fluxes and manual intervention to increase carbon sinks in China[J]. Geological Survey of China, 2021, 8(4): 40-52. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202104006.htm
    [37] 黄芬, 唐伟, 汪进良, 等. 外源水对岩溶碳汇的影响: 以桂林毛村地下河为例[J]. 中国岩溶, 2011, 30(4): 417-421. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201104013.htm

    HUANG F, TANG W, WANG J L, et al. The influence of allogenic water on karst carbon sink: A case study in the Maocun subterranean river in Guilin, China[J]. Carsologica Sinica, 2011, 30(4): 417-421. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201104013.htm
    [38] 刘再华. 碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J]. 地质学报, 2001, 75(5): 477-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200103019.htm

    LIU Z H. The role of carbonic anhydrase as an activator in carbonate rock dissolution and its significance in atmospheric CO2 precipitation[J]. Journal of the Earth Magazine, 2001, 75(5): 477-480. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200103019.htm
    [39] 曾思博, 刘再华. 我国岩溶碳汇和在非岩溶区播撒碳酸盐粉的碳中和潜力[J]. 科学通报, 2022, 67(34): 4116-4129. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202234015.htm

    ZENG S B, LIU Z H. Karst-related carbon sink and the carbon neutral potential by carbonate liming in non-karst areas in China[J]. Chinese Science Bulletin, 2022, 67(34): 4116-4129. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202234015.htm
    [40] 朱常坤. 基于信息熵的岩溶水监测网优化: 以徐州市典型水源地为例[J]. 地质科技通报, 2022, 41(1): 168-176. doi: 10.19509/j.cnki.dzkq.2022.0030

    ZHU C K. Optimization of karst water monitoring network based on information entropy: A case study in typical groundwater source sites in Xuzhou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 168-176. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0030
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  31
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-12-12
  • 修回日期:  2022-11-21

目录

    /

    返回文章
    返回