留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地绵阳-长宁拉张槽中段下寒武统筇竹寺组页岩裂缝脉体特征及古流体活动过程

陈丽清 吴娟 何一凡 蒋前前 吴伟 罗超 杜国正

陈丽清, 吴娟, 何一凡, 蒋前前, 吴伟, 罗超, 杜国正. 四川盆地绵阳-长宁拉张槽中段下寒武统筇竹寺组页岩裂缝脉体特征及古流体活动过程[J]. 地质科技通报, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584
引用本文: 陈丽清, 吴娟, 何一凡, 蒋前前, 吴伟, 罗超, 杜国正. 四川盆地绵阳-长宁拉张槽中段下寒武统筇竹寺组页岩裂缝脉体特征及古流体活动过程[J]. 地质科技通报, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584
Chen Liqing, Wu Juan, He Yifan, Jiang Qianqian, Wu Wei, Luo Chao, Du Guozheng. Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584
Citation: Chen Liqing, Wu Juan, He Yifan, Jiang Qianqian, Wu Wei, Luo Chao, Du Guozheng. Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584

四川盆地绵阳-长宁拉张槽中段下寒武统筇竹寺组页岩裂缝脉体特征及古流体活动过程

doi: 10.19509/j.cnki.dzkq.tb20220584
基金项目: 

国家自然科学基金青年科学基金项目 41502134

四川省科技厅应用基础项目 2018JY0437

详细信息
    作者简介:

    陈丽清(1987—), 女, 工程师, 主要从事页岩气地质综合评价方面的研究工作。E-mail: chenlq28@petrochina.com.cn

    通讯作者:

    吴娟(1985—), 女, 副教授, 主要从事油气成藏过程、盆地数值模拟等方面的研究工作。E-mail: wujuan16@cdut.edu.cn

  • 中图分类号: P618.12

Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin

  • 摘要:

    四川盆地绵阳-长宁拉张槽及周缘沉积了巨厚的筇竹寺组黑色页岩, 是未来深层页岩气勘探的有利目标。以拉张槽中段及周缘筇竹寺组富有机质页岩裂缝脉体中赋存的古流体为研究对象, 基于岩心和薄片观察了裂缝脉体的发育特征, 通过碳氧同位素测试分析了古流体的来源及成因, 利用盆地数值模拟恢复了地层压力演化过程, 进而探讨了筇竹寺组页岩气的保存条件。结果显示:绵阳-长宁拉张槽内的GS17井和拉张槽东侧的MX9井筇竹寺组页岩裂缝脉体相对不发育, 拉张槽西侧W201井发育多组顺层缝和高角度裂缝, 被早期方解石和晚期鞍状白云石、重晶石、石英等矿物充填;碳氧同位素结果表明成脉流体与热液和有机质脱羧作用有关;拉张槽内及东侧高石梯-磨溪地区筇竹寺组由于原油裂解发育强超压并保存至今, 而拉张槽西侧的威远构造虽然也曾经发育过超压, 但在晚期构造运动中发生了泄压作用。相较于拉张槽内和高石梯-磨溪地区, 威远地区筇竹寺组页岩气的晚期保存条件相对苛刻, 需要重点关注局部超压发育区。

     

  • 图 1  研究区位置(a)、GS17井筇竹寺组岩性柱状图(b)及西东向地震剖面(c) (据文献[15-16]修改)

    Figure 1.  Study area location(a), lithological column of the Qiongzhusi Formation of Well GS17(b) and seismic profile from the west to the east (c)

    图 2  研究区筇竹寺组页岩裂缝脉体宏观照片

    a.黑色页岩中发育高角度裂缝, 断面上见擦痕, GS17井, 筇竹寺组, 4 985.15 m;b.黑色页岩中发育高角度剪节理, GS17井, 筇竹寺组, 4 976.15 m;c, d.黑色页岩中发育一条高角度张剪性脉体, MX9井, 筇竹寺组, 4 967.21 m;e.两组高角度剪切缝被矿物充填, W201井, 筇竹寺组, 2 802.26 m;f.泥质粉砂岩中发育高角度张剪性脉体, 脉宽约1.5 cm, 2 802.03 m;g.黑色页岩中的顺层脉, 2 714.50 m;h.黑色页岩中发育多条高角度剪张性脉体, W201井, 筇竹寺组, 2 632.16 m

    Figure 2.  Macrophotographs of fracture veins from the Qiongzhusi Formation shale in the study area

    图 3  MX9井(4 967.21 m)筇竹寺组页岩裂缝脉体微观照片

    a.图 2-c中的张剪性脉体在单偏光下连续拍照, 裂缝中主要充填石英, 夹杂围岩碎屑和黄铁矿;b, c.石英晶粒间夹杂着围岩碎屑和具橙色阴极发光的方解石;d.石英脉体中夹杂围岩碎屑和黄铁矿, 单偏光

    Figure 3.  Microscopic photographs of fracture veins from the Qiongzhusi Formation shale of Well MX9(4 967.21 m)

    图 4  W201井(2 802.03 m)筇竹寺组页岩裂缝脉体微观照片

    a.图 2-f中的张剪性脉在单偏光下连续拍照, 可见沿裂缝边缘向中间依次充填中、粗晶方解石+重晶石-粗晶白云石;b, c.沿裂缝边缘向中间充填方解石、白云石和重晶石;d, e.粗晶白云石和重晶石混合充填;f, g.方解石和重晶石混合充填

    Figure 4.  Microscopic photographs of fracture veins from the Qiongzhusi Formation shale of Well W201(2 802.03 m)

    图 5  W201井(2 714.50 m)筇竹寺组页岩裂缝脉体微观照片

    a.图 2-g中的顺层脉在单偏光下连续拍照, 可见沿裂缝边缘向中间依次充填有机质-细晶方解石+泥质-中、粗晶方解石+鞍状白云石;b~e.中晶白云石与鞍状白云石混合充填;f, g.沿裂缝边缘向中间依次充填有机质-细晶方解石+有机质

    Figure 5.  Microscopic photographs of fracture veins from the Qiongzhusi Formation shale of Well W201(2 714.50 m)

    图 6  研究区筇竹寺组页岩及脉体碳氧同位素值分布图

    Figure 6.  Carbon and oxygen isotope values of the Qiongzhusi Formation shale and veins in the study area

    图 7  筇竹寺组页岩及脉体流体来源综合判识图[32-33]

    Figure 7.  Comprehensive identification of fluid sources of the Qiongzhusi Formation shale and veins

    图 8  伊顿法(a)和钻井液密度(b)计算筇竹寺组地层压力系数

    Figure 8.  Pressure coefficient of the Qiongzhusi Formation calculated by the Eaton method(a) and drilling fluid density(b)

    图 9  MX9井筇竹寺组生烃史及地层压力演化史耦合关系图

    Figure 9.  Hydrocarbon generation and formation pressure evolution history of the Qiongzhusi Formation of Well MX9

    图 10  W201井筇竹寺组生烃史及地层压力演化史耦合关系图

    Figure 10.  Hydrocarbon generation and formation pressure evolution history of the Qiongzhusi Formation of Well W201

    表  1  研究区筇竹寺组页岩及脉体碳氧同位素特征

    Table  1.   Carbon and oxygen isotope characteristics of the Qiongzhusi Formation shale and veins in the study area

    井号 GS17井 MX9井 W201井
    层位 筇一2亚段 筇二段 筇一2亚段 筇一1亚段 筇一2亚段
    围岩δ13C/‰ -4.13~-2.86 -3.48~-1.09 -0.65~-0.17 -6.31~-3.06 -5.46~-3.30
    围岩δ18O/‰ -12.96~-9.79 -13.18~-9.81 -12.83~-9.53 -15.14~-9.64 -15.05~-11.27
    脉体δ13C/‰ - - -4.38 -5.85~-0.22 -3.30~-1.25
    脉体δ18O/‰ - - -11.21 -16.01~-13.15 -14.80~-10.20
    Δδ13C围岩-脉体/‰ - - 4.22 -4.27~2.10 -4.22~0.01
    Δδ18O围岩-脉体/‰ - - 0.13 -1.18~5.34 -1.56~2.43
    下载: 导出CSV

    表  2  盆地数值模拟输入参数、模型及地层压力拟合结果

    Table  2.   Input parameters, models and formation pressure simulation results for basin modeling

    模型选择 Compaction Method Fluid Flow
    Pressure Method Statoil fluid Flow
    Geothermal calculation Transient Heat Flow
    输入参数 钻井号 MX9井 W201井
    地表温度 20℃ 20℃
    井底温度 156℃(5 600 m, 灯影组) 71.8℃(1 525 m, 龙马溪组)
    现今热流 50 mW/m2 48 mW/m2
    w(TOC)值 4.52%(筇竹寺组平均值) 2.13%(筇竹寺组平均值)
    Ro实测值 / 3.22%(2 822 m, 筇竹寺组)
    筇竹寺组地层压力 实测压力系数 2.16(伊顿法计算) 1.01
    拟合地层压力 107.08 MPa(4 983 m) 28.2 MPa(2 822 m)
    拟合压力系数 2.15 1.00
    下载: 导出CSV
  • [1] 张道伟. 四川盆地未来十年天然气工业发展展望[J]. 天然气工业, 2021, 41(8): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108006.htm

    Zhang D W. Development prospect of natural gas industry in the Sichuan Basin in the next decade[J]. Natural Gas Industry, 2021, 41(8): 34-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108006.htm
    [2] Ding Y, Li Z, Liu S, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the Upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077. doi: 10.1016/j.precamres.2020.106077
    [3] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm

    Zou C N, Du J H, Xu C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    [4] 钟勇, 李亚林, 张晓斌, 等. 川中古隆起构造演化特征及其与早寒武世绵阳-长宁拉张槽的关系[J]. 成都理工大学学报: 自然科学版, 2014, 41(6): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406005.htm

    Zhong Y, Li Y L, Zhang X B, et al. Evolution characteristics of Central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2014, 41(6): 703-712(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406005.htm
    [5] 刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报: 自然科学版, 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm

    Liu S G, Wang Y G, Sun W, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2016, 43(1): 1-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm
    [6] 魏国齐, 杨威, 谢武仁, 等. 克拉通内裂陷及周缘大型岩性气藏形成机制、潜力与勘探实践: 以四川盆地震旦系-寒武系为例[J]. 石油勘探与开发, 2022, 49(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203004.htm

    Wei G Q, Yang W, Xie W R, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: Taking the Sinian-Cambrian of Sichuan Basin as an example[J]. Petroleum Exploration and Development, 2022, 49(2): 1-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203004.htm
    [7] 杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm

    Du J H, Wang Z C, Zou C N, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm
    [8] 魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪-早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm

    Wei G Q, Yang W, Du J H, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm
    [9] 杨雨, 罗冰, 张本健, 等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43(4): 611-619. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104007.htm

    Yang Y, Luo B, Zhang B J, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experimen, 2021, 43(4): 611-619(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104007.htm
    [10] 邹才能, 杨智, 孙莎莎, 等. "进源找油": 论四川盆地页岩油气[J]. 中国科学: 地球科学, 2020, 50(7): 903-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007003.htm

    Zou C N, Yang Z, Sun S S, et al. "Exploring petroleum inside source kitchen": Shale oil and gas in Sichuan Basin[J]. Science China: Earth Sciences, 2020, 50(7): 903-920(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007003.htm
    [11] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm

    Dong D Z, Gao S K, Huang J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm
    [12] 梁峰, 姜巍, 戴赟, 等. 四川盆地威远-资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205007.htm

    Liang F, Jiang W, Dai Y, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205007.htm
    [13] 杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm

    Yang Y M, Chen Y L, Liu S Y, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Nature Gas Industry, 2021, 41(1): 42-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm
    [14] 周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605002.htm

    Zhou W, Xu H, Yu Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5): 18-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605002.htm
    [15] 孙玮, 刘树根, 宋金民, 等. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征: 以四川叠合盆地震旦系灯影组为例[J]. 成都理工大学学报: 自然科学版, 2017, 44(3): 257-285. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm

    Sun W, Liu S G, Song J M, et al. The formation process and characteristics of ancient and deep carbonate petroleum reservoirs in superimposed basins: A case study of Sinian(Ediacaran) Dengying Formation in the Sichuan Superimposed Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(3): 257-285(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm
    [16] 付小东, 陈娅娜, 罗冰, 等. 中上扬子区下寒武统麦地坪组-筇竹寺组烃源岩与含油气系统评价[J]. 中国石油勘探, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm

    Fu X D, Chen Y N, Luo B, et al. Evaluation of source rocks and petroleum system of the Lower Cambrian Maidiping Formation-Qiongzhusi Formation in the Middle-Upper Yangtze region[J]. China Petroleum Exploration, 2022, 27(4): 103-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm
    [17] Griffith E M, Paytan A. Barite in the ocean: Occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835. http://pdfs.semanticscholar.org/154f/c1274ff7d307a00d62d19f928c045e0ae97a.pdf
    [18] Goldberg T, Mazumdar A, Strauss H, et al. Insights from stable S and O isotopes intobiogeochemical processes and genesis of Lower Cambrian barite-pyrite concretions of South China[J]. Organic Geochemistry, 2006, 37(10): 1278-1288. http://www.researchgate.net/profile/Graham_Shields-Zhou/publication/27667267_Insights_from_stable_S_and_O_isotopes_into_biogeochemical_processes_and_genesis_of_Lower_Cambrian_barite-pyrite_concretions_of_South_China/links/543bde870cf2d6698be342ce.pdf
    [19] 昝博文, 刘树根, 冉波, 等. 扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J]. 岩石矿物学杂志, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm

    Zan B W, Liu S G, Ran B, et al. An analysis of barite concretions from Lower Silurian Longmaxi Formation on the northern margin of the Yangtze Block and their genetic mechanism[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 213-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm
    [20] 王玉满, 陈波, 李新景, 等. 川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J]. 石油学报, 2018, 39(10): 1092-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810002.htm

    Wang Y M, Chen B, Li X J, et al. Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation, northeast Sichuan area[J]. Acta Petrolei Sinica, 2018, 39(10): 1092-1102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810002.htm
    [21] 昝博文. 大巴山南缘城口-巫溪地区龙马溪组底部重晶石特征及其古环境意义[D]. 成都: 成都理工大学, 2017.

    Zan B W. Characteristics of barite and its paleoenvironmental significance of Lower Silurian Longmaxi Formation in Chengkou and Wuxi area in the southern margin of Daba Mountain[D]. Chengdu: Chengdu University of Technology, 2017(in Chinese with English abstract).
    [22] Lash G G. Authigenic barite nodules and carbonate concretions in the Upper Devonian shale succession of western New York: A record of variable methane flux during burial[J]. Marine and Petroleum Geology, 2015, 59: 305-319. http://dialog.proquest.com/professional/professional/docview/1661393636?accountid=131175
    [23] 田涛, 周世新, 付德亮, 等. 米仓山-汉南隆起牛蹄塘组页岩稳定碳同位素组成及其意义[J]. 中国石油大学学报: 自然科学版, 2019, 43(4): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201904005.htm

    Tian T, Zhou S X, Fu D L, et al. Composition of carbon isotope of Niutitang Formation in Micangshan-Hannan Uplift and its significances[J]. Journal of China University of Petroleum: Edition of Natural Science, 2019, 43(4): 40-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201904005.htm
    [24] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    [25] 刘安, 陈孝红, 肖七林, 等. 寒武系古流体地球化学特征及其对页岩气保存的指示意义: 以中扬子地区寒武系页岩气发现井宜地2井为例[J]. 地质学报, 2022, 96(7): 2573-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207022.htm

    Liu A, Chen X H, Xiao Q L, et al. Geochemistry characteristics of Cambrian paleofluid and its implications for shale gas preservation: A study case of the Yidi 2 well in the Yichang area[J]. Acta Geologica Sinica, 2022, 96(7): 2573-2584(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207022.htm
    [26] 刘安, 周鹏, 陈孝红, 等. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件: 以中扬子地区寒武系为例[J]. 天然气工业, 2021, 41(2): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htm

    Liu A, Zhou P, Chen X H, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes: A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41(2): 47-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htm
    [27] 李文. 涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征[D]. 武汉: 中国地质大学(武汉), 2018.

    Li W. Origins of fractured veins and characteristics of paleo-temperature and pressure of fluid inclusions in marine shales of Fuling and Yichang regions[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [28] 高键. 渝东地区五峰-龙马溪组页岩裂缝脉体古温压及古流体成因[D]. 武汉: 中国地质大学(武汉), 2018.

    Gao J. Paleo-temperature and pressure and origin of paleo-fluid of fracture veins in the Wufeng-Longmaxi shales of Yudong area[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [29] 黄伟林, 冯明友, 刘小洪, 等. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317

    Huang W L, Feng M Y, Liu X H, et al. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0317
    [30] 陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426

    Chen S W, Liu J Z. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0426
    [31] Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269: 209-213. http://www.nature.com/nature/journal/v269/n5625/pdf/269209a0.pdf
    [32] 牛英杰, 孙宏岩, 王居松, 等. 老挝帕奔金矿成矿流体特征及成因类型[J]. 地质找矿论丛, 2017, 32(2): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201702021.htm

    Niu Y J, Sun H Y, Wang J S, et al. Study on features of ore-forming fluid and ore genesis of phapon gold deposit, Luangprobang, Laos[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(2): 317-323(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201702021.htm
    [33] 吴安彬, 罗群, 代兵, 等. 海相高演化页岩裂缝方解石脉成因机制及指示意义[J]. 中国石油大学学报: 自然科学版, 2022, 46(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202203003.htm

    Wu A B, Luo Q, Dai B, et al. Genetic mechanism and indicative significance of fracture calcite veins in marine high-evolution shale[J]. Journal of China University of Petroleum: Edition of Natural Science, 2022, 46(3): 25-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202203003.htm
    [34] 何陈诚, 陈红汉, 肖雪薇, 等. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J/OL]. 地学前缘. https://doi.org/10.13745/j.esf.2022.5.33.

    He C C, Chen H H, Xiao X W, et al. Study on differential processes of shale gas generation of the Lower Cambrian Qiongzhusi Stage source rocks in the Middle and Upper Yangtze region[J/OL]. Earth Science Frontiers. https://doi.org/10.13745/j.esf.2022.5.33 (in Chinese with English abstract).
    [35] 吴娟, 陈学忠, 刘文平, 等. 川南五峰组-龙马溪组页岩流体活动及压力演化过程[J]. 地球科学, 2022, 47(2): 518-531. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202010.htm

    Wu J, Chen X Z, Liu W P, et al. Fluid activity and pressure evolution process of Wufeng-Longmaxi shales, southern Sichuan Basin[J]. Earth Science, 2022, 47(2): 518-531(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202010.htm
    [36] 马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    Ma X H, Xie J, Yong R. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm
    [37] 吴娟, 叶加仁, 施和生, 等. 恩平凹陷中央断裂构造带超压发育及成藏意义[J]. 中南大学学报: 自然科学版, 2013, 44(7): 2801-2811. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm

    Wu J, Ye J R, Shi H S, et al. Overpressure forming and its effect on petroleum accumulation in central faulted structural belt of Enping Depression, China[J]. Journal of Central South University: Science and Technology, 2013, 44(7): 2801-2811(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm
    [38] 王尉, 赵路子, 罗冰, 等. 川西地区二叠系火山岩异常高压演化与天然气成藏的关系[J]. 石油学报, 2021, 42(11): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111004.htm

    Wang W, Zhao L Z, Luo B, et al. Relationship between abnormal high pressure evolution of Permian volcanic rocks and natural gas accumulation in the western Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1437-1445(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111004.htm
    [39] 李伟, 易海永, 胡望水, 等. 四川盆地加里东古隆起构造演化与油气聚集的关系[J]. 天然气工业, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm

    Li W, Yi H Y, Hu W S, et al. Tectonic evolution of Caledonian paleohigh in the Sichuan Basin and its relationship with hydrocarbon accumulation[J]. Natural Gas Industry, 2014, 34(3): 8-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm
    [40] 刘树根, 孙玮, 赵异华, 等. 四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素[J]. 天然气工业, 2015, 35(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501002.htm

    Liu S G, Sun W, Zhao Y H, et al. Differential accunmulation and distribution of natural gas and their main controlling factors in the Upper Sinian Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 10-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501002.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  410
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19

目录

    /

    返回文章
    返回