留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑坡张拉变形区砌体房屋变形破坏特征数值模拟

韩幽铭 桂蕾 朱兴华 陈丽霞 余玉婷 陈琴

韩幽铭, 桂蕾, 朱兴华, 陈丽霞, 余玉婷, 陈琴. 滑坡张拉变形区砌体房屋变形破坏特征数值模拟[J]. 地质科技通报, 2023, 42(3): 55-62. doi: 10.19509/j.cnki.dzkq.tb20220718
引用本文: 韩幽铭, 桂蕾, 朱兴华, 陈丽霞, 余玉婷, 陈琴. 滑坡张拉变形区砌体房屋变形破坏特征数值模拟[J]. 地质科技通报, 2023, 42(3): 55-62. doi: 10.19509/j.cnki.dzkq.tb20220718
Han Youming, Du Lei, Zhu Xinghua, Chen Lixia, Yu Yuting, Chen Qin. Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 55-62. doi: 10.19509/j.cnki.dzkq.tb20220718
Citation: Han Youming, Du Lei, Zhu Xinghua, Chen Lixia, Yu Yuting, Chen Qin. Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 55-62. doi: 10.19509/j.cnki.dzkq.tb20220718

滑坡张拉变形区砌体房屋变形破坏特征数值模拟

doi: 10.19509/j.cnki.dzkq.tb20220718
基金项目: 

国家自然科学基金项目 41601563

地质探测与评估教育部重点实验室主人基金培育项目 GLAB2020ZR16

详细信息
    作者简介:

    韩幽铭(1996—), 男, 现正攻读安全科学与工程专业硕士学位,主要从事地质灾害风险评价研究。E-mail:hanym@cug.edu.cn

    通讯作者:

    桂蕾(1986—), 女, 讲师, 主要从事滑坡灾害预测预报与风险分析。E-mail: lei_gui@cug.edu.cn

  • 中图分类号: P642.22

Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas

  • 摘要:

    为保证滑坡上居民的生命和财产安全, 揭示滑坡上砌体房屋的变形破坏规律, 开展滑坡作用下砌体房屋的变形破坏过程模拟研究十分必要。试验基于ABAQUS接触分离式建模方法建立了砌体房屋精细化模型, 利用黏性接触界面来模拟砂浆在墙体中的作用,并将数值模拟结果与物理模型试验结果进行了对比分析。结果表明:通过物理模型试验和数值模型试验中砌体房屋宏观变形特征及微观应力应变数据的对比, 物理模型试验和数值模型试验的载荷-应变曲线拟合度较好、应变云图基本一致, 证明了该数值模拟方法的有效性;揭示了滑坡张拉变形区房屋墙体裂缝的扩展规律和应变分布规律。研究结果可以为滑坡张拉区砌体房屋防护设计提供依据。

     

  • 图 1  塘角1号滑坡(a)、裂缝统计信息(b)与建筑物裂缝(c为墙体竖直向裂缝; d为墙体斜向裂缝; e为天花板裂缝)

    Figure 1.  Tangjiao No.1 landslide(a), crack statistical information(b) and building cracks(c is the vertical crack of the wall, d is the oblique crack of the wall, and e is the crack of the ceiling)

    图 2  物理模型(a)及数值模型(b)(数字1~17均为应变片编号)

    Figure 2.  Physical test model (a) and numerical model (b)

    图 3  滑坡变形三阶段[14](a)和对应加载曲线(b)

    Figure 3.  Three stages of landslide deformation(a) and corresponding loading curve(b)

    图 4  数值模拟加载曲线(a)与加载边界条件设置(b)

    Figure 4.  Loading curve of the numerical simulation(a) and load boundary condition settings(b)

    图 5  D墙体破坏(a为物理模型, c为数值模型)与A墙体破坏(b为物理模型, d为数值模型)

    Figure 5.  Wall D failure(a is physical model, c is numerical model) and Wall A failure(b is physical model, d is numerical model)

    图 6  物理模型中D墙体应变曲线(a)与监测点11应变曲线(b)(F为荷载,下同)

    Figure 6.  Strain curve of Wall D in the physical model (a) and strain curve of monitoring point No.11(b)

    图 7  物理模型中D墙体应变云图

    Figure 7.  Strain contours of Wall D in the physical model

    图 8  数值模拟中D墙体应变云图

    Figure 8.  Strain contours of the Wall D in the numerical model

    表  1  主要材料参数

    Table  1.   Main material parameters

    部位 材料 杨氏模量/MPa 泊松比 密度/(kg·m-3)
    浅基础 C15混凝土 2.2×103 0.20 2 400
    砖块 烧结砖 4.4×103 0.15 2 000
    下载: 导出CSV
  • [1] 桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学(武汉), 2014.

    Gui L. Research on landside development regularities and risk in Wanzhou district, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
    [2] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. doi: 10.19509/j.cnki.dzkq.2020.0319

    Lian Z P, Xu Y, Fu S, et al. Landside susceptibility assessment based on multi-model fusion method: A case study in Wufeng Country, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0319
    [3] 余玉婷, 桂蕾, 朱兴华, 等. 滑坡不同作用模式下房屋基础变形特征[J]. 地质科技通报, 2021, 40(6): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0623

    Yu Y T, Gui L, Zhu X H, et al. Deformation characteristics of building foundation under different action modes of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 236-245(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0623
    [4] 彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    Peng S Q, Ke L, Zheng T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622
    [5] 张先扬, 袁广林. 采动区砌体结构抗变形实验[J]. 黑龙江科技大学学报, 2008, 18(3): 176-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htm

    Zhang X Y, Yuan G L. Experiment of anti-deformation of masonry structure in mining subsidence area[J]. Journal of Heilongjiang University of Science and Technology, 2008, 18(3): 176-179(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htm
    [6] Yamin L E, Phillips C A, Reyes J C, et al. Seismic behavior and rehabilitation alternatives for adobe and rammed earth buildings[C]//Anon. 13th World Conference on Earthquake Engineering. BC Canada: Vancouver, 2004: 1-6.
    [7] Calderón S, Milani G, Sandoval C. Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation[J]. Engineering Structures, 2021, 234: 111987. doi: 10.1016/j.engstruct.2021.111987
    [8] 李佳. 基于数值模拟的砌体结构倒塌影响因素分析及抗倒塌措施初探[D]. 重庆: 重庆大学, 2013.

    Li J. The collapsed factors analysis of masonry structures and preliminary exploration about anti-collapse based on numerical simulation[D]. Chongqing: Chongqing University, 2013(in Chinese with English abstract).
    [9] 丁瑞彬. 砌体精细化建模方法及砌体拟静力试验的数值模拟分析[D]. 太原: 太原理工大学, 2016.

    Ding R B. Detailed modeling method on masonry and quasi-static experiment numerical simulation analysis of masonry[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese with English abstract).
    [10] Abdulla K F, Cunningham L S, Gillie M. Simulating masonry wall behaviour using a simplified micro-model approach[J]. Engineering Structures, 2017, 151: 349-365. doi: 10.1016/j.engstruct.2017.08.021
    [11] 郭玉荣, 张楠. 近距离爆炸荷载作用下砌体墙动态响应及破坏历程的数值模拟[J]. 湖南大学学报: 自然科学版, 2016, 43(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htm

    Guo Y R, Zhang N. Numerical simulation of masonry wall dynamic response and failure process under close range balst load[J]. Journal of Hunan University: Natural Sciences, 2016, 43(1): 61-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htm
    [12] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012.

    Han X. The dynamic response of brick masonry wall subjected to gas explosion load[D]. Xi'an: Chang'an University, 2012(in Chinese with English abstract).
    [13] 郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社, 2010.

    Zhen Y R, Chen Z Y, Wang G X, et al. Engineering treatment of slop & landslide[M]. Beijing: China Communications Press, 2010(in Chinese).
    [14] 陈元勇, 王富强. 滑坡变形破坏过程中的受力特征分析[J]. 西部探矿工程, 2020, 32(11): 22-23, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htm

    Chen Y Y, Wang F Q. Analysis of force characteristics in landslide deformation and failure process[J]. West-China Exploration Engineering, 2020, 32(11): 22-23, 29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htm
    [15] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm

    Xu Q, Tang M G, Xu K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm
    [16] Lü W R, Wang M, Liu X J. Numerical analysis of masonry under compression via micro-model[J]. Advanced Materials Research, 2011, 243/249: 1360-1365.
    [17] Feba S T, Kuriakose B. Nonlinear finite element analysis of unreinforced masonry walls[J]. Applied Mechanics and Materials, 2017, 857: 142-147. http://www.onacademic.com/detail/journal_1000039769832610_1476.html
    [18] 万蕾. 基于内聚力模型和三维离散元法沥青混合料劈裂试验研究[D]. 杭州: 浙江大学, 2016.

    Wang L. Study on asphalt mixture splitting test cohesive zone model and tree-dimension discrete element method[D]. Hangzhou: Zhejiang University, 2016(in Chinese with English abstract).
    [19] 蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨[J]. 建筑结构, 2019, 49(增刊1): 640-644. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htm

    Jiang J T, Zhou X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling[J]. Building Structure, 2019, 49(S1): 640-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htm
    [20] 李聪, 朱杰兵, 汪斌, 等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报, 2016, 35(7): 1407-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm

    Li C, Zhu J B, Wang B, et al. Critical deformation velocity of lamdslide in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm
    [21] 许强, 曾裕平, 钱江澎, 等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报, 2009, 28(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htm

    Xu Q, Zeng Y P, Qian J P, et al. Study on improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  347
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19

目录

    /

    返回文章
    返回