留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松辽盆地现今地温场特征及控制因素

张翘然 肖红平 饶松 施亦做 李文靖 黄顺德 胡光明

张翘然, 肖红平, 饶松, 施亦做, 李文靖, 黄顺德, 胡光明. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058
引用本文: 张翘然, 肖红平, 饶松, 施亦做, 李文靖, 黄顺德, 胡光明. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058
Zhang Qiaoran, Xiao Hongping, Rao Song, Shi Yizuo, Li Wenjing, Huang Shunde, Hu Guangming. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058
Citation: Zhang Qiaoran, Xiao Hongping, Rao Song, Shi Yizuo, Li Wenjing, Huang Shunde, Hu Guangming. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058

松辽盆地现今地温场特征及控制因素

doi: 10.19509/j.cnki.dzkq.tb20230058
基金项目: 

中国石油天然气股份有限公司油气与新能源板块2022-2023年度科技课题“地热开发利用技术研究与试验” 2022KT2601

国家自然科学基金项目 41877210

国家自然科学基金项目 41502236

油气资源与勘探技术教育部重点实验室青年创新团队项目 PI2018-04

详细信息
    作者简介:

    张翘然(1998-), 女, 现正攻读地质学专业硕士学位, 主要从事地热地质学研究工作。E-mail: 717330485@qq.com

    通讯作者:

    肖红平(1979-), 男, 高级工程师, 主要从事地热地质学与储层地质学研究工作。E-mail: xiaohp_hdpu@163.com

    饶松(1985-), 男, 教授, 主要从事地热地质学与油气地质学教学和科研工作。E-mail: raosong08@163.com

  • 中图分类号: P332.6

Characteristics and controlling factors of the present geothermal field in the Songliao Basin

  • 摘要:

    沉积盆地现今地温场反映了地球内部各种动力学过程之间的能量平衡状态, 既是了解大陆岩石圈构造变形及演化等大陆动力学问题的重要窗口, 也是开展区域地热资源潜力评价的基础。通过收集松辽盆地826口钻孔试油温度数据, 结合150个岩心样品热导率测试结果, 系统刻画了全盆地现今地温场特征, 基于深部温度预测技术计算了4 000 m深度内地层温度。结果表明, 松辽盆地现今地温梯度介于22.5~69.0℃/km之间, 平均值为44.0℃/km。中央坳陷区岩石热导率值比较集中, 大多介于1.60~2.40 W/(m·K)之间, 平均值为1.84 W/(m·K), 其中泥岩热导率最低, 平均值为1.77 W/(m·K); 粉砂岩热导率居中, 平均值为1.87 W/(m·K); 细砂岩热导率最高, 平均值为2.12 W/(m·K)。大地热流值介于35.0~98.8 mW/m2, 平均值为76.9 mW/m2, 为典型的"热盆", 平面上呈中部高、边部低的环带状展布特征。松辽盆地1 000 m深度的地层温度介于26.9~72.3℃, 平均值为47.9℃; 2 000 m深度的地层温度介于49.4~141.3℃, 平均值为91.9℃; 3 000 m深度的地层温度介于71.8~167.5℃, 平均值为135.8℃; 4 000 m深度的地层温度介于94.3~210.9℃, 平均值为179.8℃。综合分析认为, 太平洋板块向欧亚板块俯冲引发软流圈上涌, 区域岩石圈迅速减薄, 来自地幔的热量显著增加; 同时, 减薄的地壳更有利于地幔热量向上传导。盆地内广泛发育的NNE和NW向两组深大断裂系为地幔物质及热流上升提供了通道, 一部分地幔物质沿深大断裂熔融析离聚集在中下地壳内形成高导低速体, 持续加热地壳, 另一部分熔融物质经断裂系喷发形成新生代火山。盆地内广泛发育的花岗岩放射性元素衰变生热, 是松辽盆地内又一重要热源。此外, 松辽盆地不同构造单元地壳结构的差异是现今地温场不均匀性的重要原因, 基底和沉积层热导率的差异引起的热流"折射"效应, 促进了浅部热量的再分配, 形成了凹凸相间的热流分布格局。松辽盆地良好的储盖配置关系, 为热量的贮存提供了良好条件, 有利于松辽盆地地热资源的赋存与开发。

     

  • 图 1  松辽盆地构造区划及测温钻孔分布示意图(a)和松辽盆地中部构造剖面图(b)

    Figure 1.  Structural subdivision and boreholes for temperature measurements(a) and structural cross section across the central part of the Songliao Basin(b)

    图 2  松辽盆地不同地区钻井深度与温度的关系

    F1.嫩江断裂带;F2.佳木斯-伊通断裂带;F3.西拉木伦河断裂带;F4.敦化-密山断裂带。图中地层代号说明见正文

    Figure 2.  Relationship between depth and temperature in various areas of the Songliao Basin

    图 3  松辽盆地岩石热导率统计直方图

    Figure 3.  Histogram of thermal conductivity of rocks in the Songliao Basin

    图 4  松辽盆地不同岩性岩石热导率随深度变化

    Figure 4.  Variation of the thermal conductivity of various lithologic rocks with depth in the Songliao Basin

    图 5  松辽盆地代表性钻孔系列试油温度拟合地温梯度结果

    Figure 5.  Fitting results of the geothermal gradient based on the oil-testing temperature of typical boreholes in the Songliao Basin

    图 6  松辽盆地现今地温梯度分布

    1.大庆长垣;Ⅰ2.三肇凹陷;Ⅰ3.朝阳沟阶地;Ⅰ4.扶新隆起带;Ⅱ1.长春岭背斜带;Ⅱ2.宾县王府凹陷;Ⅱ3.青山口背斜带

    Figure 6.  Distribution of the present geothermal gradient in the Songliao Basin

    图 7  松辽盆地现今大地热流分布

    Figure 7.  Distribution of the present heat flow in the Songliao Basin

    图 8  松辽盆地1 000,2 000,3 000,4 000 m深度的温度分布

    Figure 8.  Temperature distribution at depths of 1 000, 2 000, 3 000, 4 000 m in the Songliao Basin

    图 9  松辽盆地高地热成因构造机制示意图(据文献[40-41]修改)

    b中平面部分红色虚线代表太平洋板块上边界的深度;红色三角为火山;绿线表示大兴安岭重力梯度带;黑色实线表示主干断层;蓝色虚线表示大兴安岭西部盆地群;剖面部分为P波速度(dvp)异常图,红色和蓝色分别表示低速和高速;白点为地震

    Figure 9.  Schematic diagram of the tectonic model for high geothermal origin in the Songliao Basin

    表  1  松辽盆地地温梯度及大地热流数据汇编

    Table  1.   Data set of the geothermal gradient and heat flow in the Songliao Basin

    序号 测点名称 经度 纬度 地温梯度值/(℃·km-1) 热流值/(mW·m-2) 序号 测点名称 经度 纬度 地温梯度值/(℃·km-1) 热流值/(mW·m-2)
    1 311 124°23′15″ 46°38′0″ / 69.5 2 314 124°34′30″ 46°9′30″ / 95.0
    3 315 124°43′30″ 46°1′30″ / 80.8 4 316 124°51′30″ 46°27′30″ / 84.2
    5 317 124°58′00″ 45°54′00″ / 75.4 6 320 125°43′15″ 47°3′15″ / 56.1
    7 321 125°44′15″ 48°1′30″ / 44.4 8 322 125°49′30″ 45°46′30″ / 45.2
    9 323 126°21′00″ 45°58′0″ / 80.4 10 324 132°0′30″ 47°0′30″ / 46.5
    11 592 131°9′00″ 45°8′00″ / 56.8 12 593 130°59′00″ 45°7′00″ / 35.0
    13 594 130°53′00″ 45°5′00″ / 69.9 14 598 113°49′22″ 33°44′23″ / 56.8
    15 599 113°24′44″ 33°43′24″ / 35.0 16 600 113°28′50″ 33°45′31″ / 69.9
    17 1 211 129°18′33″ 42°48′49″ 28.1 66.0 18 1 214 123°46′00″ 44°10′21″ 28.7 66.1
    19 1 215 124°37′50″ 44°30′6″ / 66.0 20 1 216 124°7′38″ 44°39′22″ / 51.5
    21 1 217 124°6′47″ 44°40′49″ / 58.3 22 1 218 124°7′57″ 44°37′48″ / 58.0
    23 1 219 124°49′45″ 45°13′51″ / 76.0 24 1 219 124°49′45″ 45°13′51″ 66.3
    25 1 220 124°49′45″ 45°13′51″ / 75.9 26 1 223 124°27′9″ 43°47′22″ / 75.1
    27 1 224 124°28′43″ 43°48′26″ / 76.0 28 1 225 124°35′15″ 43°46′34″ / 77.5
    29 1 226 124°34′51″ 43°46′43″ / 85.0 30 1 228 127°21′00″ 45°42′00″ 22.5 62.9
    31 白92 123°2′36″ 45°36′1″ 44.5 78.0 32 朝52 125°48′18″ 45°47′5″ 56.0 94.6
    33 川10 125°54′34″ 45°55′17″ 49.9 94.4 34 大208 124°8′42″ 45°28′4″ 45.3 90.2
    35 大26 124°8′8″ 45°36′31″ 40.4 72.2 36 大45 124°2′18″ 45°32′40″ 45.1 87.9
    37 大51 124°11′58″ 45°31′8″ 44.2 87.9 38 大56 123°58′22″ 45°22′47″ 41.7 81.3
    39 德深5 125°27′38″ 44°19′23″ 33.1 90.0 40 方101 123°56′2″ 46°12′36″ 45.9 79.9
    41 方52 123°56′6″ 46°8′44″ 45.3 78.2 42 方53 123°56′35″ 46°5′33″ 43.8 75.3
    43 方54 123°53′41″ 46°7′3″ 43.8 75.4 44 方91 123°52′13″ 46°13′0″ 43.4 75.0
    45 方97 123°58′57″ 46°2′23″ 47.3 70.2 46 扶126 125°5′11″ 45°7′33″ 58.7 91.0
    47 高2-6 123°54′55″ 45°54′22″ 43.5 79.2 48 孤23 124°30′1″ 45°5′59″ 45.4 90.3
    49 孤30 124°20′46″ 44°45′40″ 42.8 83.5 50 孤7 124°25′59″ 44°49′26″ 42.3 87.4
    51 海27 123°51′20″ 45°10′40″ 38.1 68.1 52 海28 123°49′46″ 45°8′49″ 38.5 68.8
    53 海35 123°41′23″ 45°9′55″ 41.5 81.3 54 海51 123°50′34″ 45°3′36″ 38.5 74.9
    55 黑102 123°54′52″ 44°44′5″ 40.5 77.3 56 黑111 124°0′47″ 44°47′10″ 39.6 77.6
    57 黑43 123°53′11″ 44°44′40″ 39.7 75.7 58 黑45 123°53′10″ 44°46′21″ 39.6 75.6
    59 黑46 123°59′54″ 44°46′19″ 39.4 75.2 60 黑47 123°51′4″ 44°50′4″ 39.7 77.8
    61 黑50 124°0′20″ 44°44′54″ 39.5 77.4 62 黑51 123°54′26″ 44°43′38″ 39.5 77.5
    63 黑53 123°58′28″ 44°50′41″ 38.1 74.7 64 黑57 124°2′37″ 44°47′6″ 41.1 80.5
    65 黑60 123°51′33″ 44°51′26″ 38.5 75.5 66 黑65 123°49′27″ 44°49′30″ 38.3 73.1
    67 黑69 123°55′36″ 44°51′20″ 38.3 75.1 68 黑72 124°1′8″ 44°48′21″ 39.5 77.4
    69 黑74 124°5′5″ 44°44′46″ 40.2 78.4 70 黑76 124°1′41″ 44°45′49″ 40.4 79.2
    71 黑96-3 124°6′19″ 44°45′13″ 40.5 78.9 72 黑98-2 124°6′27″ 44°47′41″ 41.0 80.4
    73 黑97 124°2′52″ 44°49′44″ 39.6 77.6 74 红78 124°2′18″ 45°41′33″ 41.5 80.9
    75 红81 124°0′35″ 45°40′11″ 42.2 82.7 76 红90 124°3′11″ 45°35′11″ 45.0 88.1
    77 红91 124°0′00″ 45°34′47″ 43.9 85.6 78 红94 123°58′30″ 45°35′59″ 43.1 83.9
    79 花11 123°42′7″ 44°52′34″ 41.3 78.8 80 花16 123°48′15″ 44°51′14″ 39.9 78.3
    81 花18 123°47′1″ 44°49′34″ 39.8 75.9 82 花7 123°46′36″ 44°53′48″ 39.9 78.2
    83 吉10-14 124°29′34″ 45°14′40″ 52.8 86.2 84 吉检2 124°29′41″ 45°14′10″ 48.8 85.1
    85 吉检3 124°29′46″ 45°14′18″ 51.4 82.3 86 老2-3 124°18′36″ 44°33′57″ 45.0 87.8
    87 老7 124°16′54″ 44°34′11″ 44.2 86.2 88 民10 124°46′44″ 45°23′39″ 53.7 84.7
    89 民13 124°48′46″ 45°23′9″ 56.3 89.7 90 民15 124°49′1″ 45°24′34″ 55.1 89.7
    91 民33 124°44′46″ 45°18′8″ 56.8 90.7 92 民9 124°50′3″ 45°22′36″ 55.7 90.9
    93 平7 123°25′22″ 45°14′54″ 54.0 80.5 94 乾124 123°55′24″ 44°49′33″ 38.9 76.2
    95 乾122-1 124°5′7″ 44°59′12″ 44.6 87.4 96 乾20-3 124°8′37″ 44°55′27″ 39.7 77.9
    97 乾133 124°12′53″ 44°41′56″ 42.6 83.4 98 乾139 123°54′49″ 44°48′54″ 37.7 72.0
    99 乾157 123°59′37″ 44°55′9″ 39.1 74.6 100 乾165 124°3′21″ 45°3′32″ 40.6 79.5
    101 乾174 124°2′37″ 45°0′19″ 40.4 79.2 102 乾180 123°56′16″ 45°0′57″ 38.7 75.8
    103 乾202 124°10′2″ 44°57′0″ 41.0 80.4 104 乾3-9 124°7′29″ 44°57′10″ 40.5 79.0
    105 乾深14 124°11′29″ 45°7′13″ 41.1 78.5 106 乾深2 124°11′18″ 44°57′18″ 39.4 77.3
    107 乾北18-8 124°4′30″ 45°2′38″ 33.1 64.8 108 乾北20-8 124°4′30″ 45°2′49″ 31.9 62.5
    109 青2 126°21′7″ 45°57′31″ / 95.4 110 三401 125°54′54″ 45°38′36″ 54.1 94.3
    111 情东15-5 124°0′4″ 44°45′49″ 38.7 75.8 112 情西100-32 123°51′11″ 44°51′55″ 36.7 71.8
    113 四501 125°56′12″ 45°40′58″ 56.4 95.0 114 五105 126°0′49″ 45°42′59″ 56.8 96.0
    115 新326 124°25′31″ 45°19′10″ 51.8 80.9 116 新深1 124°26′55″ 45°13′16″ 42.0 83.5
    117 英115 123°5′27″ 45°53′38″ 40.0 78.3 118 英124 123°53′7″ 45°53′31″ 41.2 70.8
    119 英14-3 123°53′28″ 45°54′10″ 42.6 76.1 120 长102 125°14′24″ 45°22′14″ 66.1 98.8
    注:序号1~30的热流值据文献[38],序号31~120为新增热流值
    下载: 导出CSV

    表  2  松辽盆地一级构造单元大地热流统计结果

    Table  2.   Statistics of heat flow in the first structural units of the Songliao Basin

    一级构造单元 地温梯度范围/(℃·km-1) 热流范围/(mW·m-2) 平均热流/(mW·m-2) 热流测点数量/个
    中央坳陷区 22.6~64.4 35.0~95.0 76.7 100
    东南隆起区 32.1~69.0 62.9~98.8 82.6 13
    东北隆起区 28.2~52.5 80.4~95.4 87.9 2
    西部斜坡区 32.4~57.7 78.0~80.5 79.2 2
    北部倾没区 27.1~41.0 44.4~46.5 45.5 2
    西南隆起区 66.0 1
    下载: 导出CSV
  • [1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015(in Chinese).
    [2] 汪集暘, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703002.htm

    Wang J Y, Qiu N S, Hu S B, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Seience Frontiers, 2017, 24(3): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703002.htm
    [3] 唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm

    Tang X C, Wang G L, Ma Y, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 94(7): 2052-2065(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm
    [4] 何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 966-969. doi: 10.3321/j.issn:1002-008X.2001.09.013

    He L J, Hu S B, Wang J Y. Characteristics of lithospheric thermal structure in the eastern continental China[J]. Progress in Natural Science, 2001, 11(9): 966-969(in Chinese). doi: 10.3321/j.issn:1002-008X.2001.09.013
    [5] 任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J]. 地质学报, 2006, 80(5): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605008.htm

    Ren Z L, Zhang S, Gao S L, et al. Research on region of maturation anomaly and formation time in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 674-684(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605008.htm
    [6] 邱楠生, 左银辉, 常健, 等. 中国东西部典型盆地中-新生代热体制对比[J]. 地学前缘, 2015, 22(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm

    Qiu N S, Zuo Y H, Chang J, et al. Characteristics of Meso-Cenozoic thermal regimes in typical eastern and western sedimentary basins of China[J]. Earth Seience Frontiers, 2015, 22(1): 157-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm
    [7] 饶松, 高腾, 肖红平, 等. 中国油区地热开发利用进展[J]. 科技导报, 2022, 40(20): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220008.htm

    Rao S, Gao T, Xiao H P, et al. Progress and prospective of geothermal exploitation and utilization in oil fields of China[J]. Science and Technology Review, 2022, 40(20): 65-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220008.htm
    [8] 王社教, 李峰, 闫家泓, 等. 油田地热资源评价方法及应用[J]. 石油学报, 2020, 41(5): 553-564. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005004.htm

    Wang S J, Li F, Yan J H, et al. Evaluation methods and application of geothermal resources in oil fields[J]. Acta Petrolei Sinica, 2020, 41(5): 553-564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005004.htm
    [9] 吴乾蕃, 谢毅真. 松辽盆地大地热流[J]. 地震地质, 1985, 7(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198502009.htm

    Wu Q F, Xie Y Z. Geothermal heat flow in the Songhuajiang-Liaoning Basin[J]. Seismology and Geology, 1985, 7(2): 59-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198502009.htm
    [10] 韩湘君, 金旭. 中国东北地区地热资源及热结构分析[J]. 地质与勘探, 2002, 38(1): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200201020.htm

    Han X J, Jin X. Geothermal resource and thermal structure in northeastern China[J]. Geology and Prospecting, 2002, 38(1): 74-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200201020.htm
    [11] 朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 黑龙江大庆: 东北石油大学, 2011.

    Zhu H L. Research on the sedimentary geothermal resources in north Songliao Basin[D]. Daqing Helongjiang: Northeast Petroleum University, 2011(in Chinese with English abstract).
    [12] 张健, 何雨蓓, 范艳霞. 松辽盆地地壳热结构与深部热源条件[J/OL]. 地球科学与环境学报: 1-11(2022-10-25)[2023-02-02]. doi: 10.19814/j.jese.2022.07035.

    Zhang J, He Y P, Fan Y X. Crustal thermal structure and deep heat source conditions in Songliao Basin, NE China[J]. Journal of Earth Sciences and Environment: 1-11(2022-10-25)[2023-02-02]. doi: 10.19814/j.jese.2022.07035.(Chinese with English abstract).
    [13] 施亦做, 王社教, 肖红平, 等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业, 2022, 42(4): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204004.htm

    Shi Y Z, Wang S J, Xiao H P, et al. 3D GeoModeller-based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry, 2022, 42(4): 46-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204004.htm
    [14] 牛璞, 韩江涛, 曾昭发, 等. 松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果[J]. 地球物理学报, 2021, 64(11): 4060-4074. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111020.htm

    Niu P, Han J T, Zeng Z F, et al. Deep controlling factors of the geothermal field in the northern Songliao Basin derived from magnetotelluric survey[J]. Chinese Journal of Geophsics, 2021, 64(11): 4060-4074(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111020.htm
    [15] 瞿雪姣, 高有峰, 林志成, 等. 松辽盆地及周缘地区侏罗系/白垩系界线区域对比特征探讨[J]. 地学前缘, 2021, 28(4): 299-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104035.htm

    Qu X J, Gao Y F, Lin Z C, et al. Discussion on the characteristics of the Jurassic-Cretaceous boundary correlation in the Songliao Basin and adjacent areas[J]. Earth Seience Frontiers, 2021, 28(4): 299-315(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104035.htm
    [16] 胡望水, 吕炳全, 张文军, 等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学, 2005, 40(1): 16-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200501002.htm

    Hu W S, Lü B Q, Zhang W J, et al. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology, 2005, 40(1): 16-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200501002.htm
    [17] Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344: 175-205.
    [18] Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin[J]. Basin Research, 2010, 22: 79-95.
    [19] 王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089

    Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089
    [20] 葛荣峰, 张庆龙, 王良书, 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 2010, 56(2): 180-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm

    Ge R F, Zhang Q L, Wang L S, et al. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China[J]. Geological Review, 2010, 56(2): 180-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm
    [21] 韩国卿, 刘永江, 金巍, 等. 西拉木伦河断裂在松辽盆地下部的延伸[J]. 中国地质, 2009, 36(5): 1010-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905008.htm

    Han G Q, Liu Y J, Jin W, et al. The distribution of Xar Moron River fault under Songliao Basin[J]. Geology in China, 2009, 36(5): 1010-1020(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905008.htm
    [22] Wang C, Feng Z, Zhang L, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(5): 17-30.
    [23] Hou H S, Wang C H, Zhang J D, et al. Deep continental scientific drilling engineering project in Songliao Basin: Progress in earth science research[J]. China Geology, 2018, 1(2): 173-186.
    [24] 邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 北京: 中国石油大学出版社, 2019.

    Qiu N S, Hu S B, He L J. Geothermics in sedimentary basins[M]. Beijing: China University of Petroleum Press, 2019(in Chinese).
    [25] 李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm

    Li C R, Rao S, Hu S B, et al. Present-day geothermal field of the Jiaoshiba shale gas area in southeast of the Sichuan Basin, SW China[J]. Chinese Journal of Geophsics, 2017, 60(2): 617-627(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm
    [26] Wu S H, Yu Z W, Kang J G, et al. Research on the anisotropy of thermal conductivity of rocks in Songliao Basin, China[J]. Renewable Energy, 2021, 179: 593-603.
    [27] 姜光政. 中国东北地区大地热流测量与岩石圈热结构[D]. 北京: 中国科学院大学(中国科学院地质与地球物研究所), 2017.

    Jiang G Z. Heat flow measurements and lithospheric thermal structure in northeastern China[D]. Beijing: University of Chinese Academy of Sciences(Institute of Geology and Geophysics Chinese Academy of Sciences), 2017(in Chinese with English abstract).
    [28] 饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm

    Rao S, Jiang G Z, Gao Y J, et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophsics, 2016, 59(6): 2176-2190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm
    [29] Wang Z T, Rao S, Xiao H P, et al. Terrestrial heat flow of Jizhong Depression, China, western Bohai Bay Basin and its influencing factors[J]. Geothermics, 2021, 96: 102210.
    [30] Wang Y B, Wang L J, Hu D, et al. The present-day geothermal regime of the north Jiangsu Basin, East China[J]. Geothermic, 2020, 88: 101829.
    [31] 徐明, 朱传庆, 田云涛, 等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 2011, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm

    Xu M, Zhu C Q, Tian Y T, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophsics, 2011, 54(4): 1052-1060(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm
    [32] 刘润川, 任战利, 叶汉青, 等. 地热资源潜力评价: 以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报, 2021, 40(4): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104013.htm

    Liu R C, Ren Z L, Ye H Q, et al. Potential evaluation of geothermal resources: Exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China, 2021, 40(4): 565-576(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104013.htm
    [33] 任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm

    Ren Z L, Yu Q, Cui J P, et al. Thermal history and its controls on oil and gas of the Ordos Basin[J]. Earth Science Frontiers, 2017, 24(3): 137-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm
    [34] Pang Y M, Zou K Z, Guo X W, et al. Geothermal regime and implications for basin resource exploration in the Qaidam Basin, northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 239: 105400.
    [35] 刘绍文, 李香兰, 郝春艳, 等. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm

    Liu S W, Li X L, Hao C Y, et al. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China[J]. Earth Seience Frontiers, 2017, 24(3): 41-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm
    [36] 黄少英, 胡方杰, 张科, 等. 塔里木盆地中央隆起超深层现今地温场特征[J]. 地质学报, 2021, 96(11): 3955-3966. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211019.htm

    Huang S Y, Hu F J, Zhang K, et al. Present-day geotemperature field of superdeep layers in the Central Uplift, Tarim Basin[J]. Acta Geologica Sinica, 2021, 96(11): 3955-3966(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211019.htm
    [37] 饶松, 胡圣标, 朱传庆, 等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm

    Rao S, Hu S B, Zhu C Q, et al. The characteristics of heat flow and litospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophsics, 2013, 56(8): 2760-2770(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm
    [38] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm

    Jiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the cotinental area of China(4th edition)[J]. Chinese Journal of Geophsics, 2016, 59(8): 2892-2910(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
    [39] 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202301003.htm

    Wang G L, Ma F, Hou H S, et al. Study of depression and layer controlled geothermal system in Songliao Basin[J]. Acta Geoscientica Sinica, 2023, 44(1): 21-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202301003.htm
    [40] 田有, 马锦程, 刘财, 等. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 2019, 62(3): 1071-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903020.htm

    Tian Y, Ma J C, Liu C, et al Effects of subduction of the western Pacific Plate on tectonic evolution of northeast China and geodynamic implications[J]. Chinese Journal of Geophsics, 2019, 62(3): 1071-1082(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903020.htm
    [41] 韩江涛, 郭振宇, 刘文玉, 等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报, 2018, 61(6): 2265-2279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806009.htm

    Han J T, Guo Z Y, Liu W Y, et al. Deep dynamic process of lithosphere thinning in Songliao Basin[J]. Chinese Journal of Geophsics, 2018, 61(6): 2265-2279(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806009.htm
    [42] 黄旭, 章惠, 汪新伟, 等. 渤海湾盆地南乐地热田特征及其成因分析[J]. 地质科技通报, 2021, 40(5): 71-82. doi: 10.19509/j.cnki.dzkq.2021.0506

    Huang X, Zhang H, Wang X W, et al. Characteristics and mechanism analysis of geothermal field in Nanle sub-uplift, Bohai Bay Baisn[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 71-82(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0506
    [43] Li J Y. Permian geodynamic setting of northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
    [44] Zhao D P, Yu S, Ohtani E. East Asia: Seismotectonics, magmatism and mantle dynamics[J]. Journal of Asian Earth Sciences, 2011, 40(3): 689-709.
    [45] Chen C X, Zhao D P, Tian Y, et al. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia[J]. Geophysical Journal International, 2017: 1-38.
    [46] 苏玉娟. 松辽盆地典型地热田成因机制及合理开发利用研究[D]. 长春: 吉林大学, 2021.

    Su Y J. Genesis and rational development of typical geothermal field in the Songliao Basin: A case study of Lindian geothermal field[D]. Changchun: Jilin University, 2021(in Chinese with English abstract).
    [47] 谭世燕, 石义强, 赵育捷. 松辽盆地地热资源的形成与远景评价[J]. 世界地质, 2001, 20(2): 155-160, 201. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200102009.htm

    Tan S Y, Shi Y Q, Zhao Y J. The formation and prospective evaluation of geothermal resources in the Songliao Basin[J]. World Geology, 2001, 20(2): 155-160, 201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200102009.htm
    [48] Shi Y Z, Jiang G Z, Shi S M, et al. Terrestrial heat flow and its geodynamic implications in the northern Songliao Basin, northeast China[J]. Geophysical Journal International, 2021, 0: 1-22.
    [49] 康凤新, 赵季初, 黄迅, 等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学, 2023, 48(3): 1080-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303017.htm

    Kang F X, Zhao J C, Huang X, et al. Heat accumulation mechanism and resources potential of the karst geothermal reservoir in Liangcun buried uplift of Linqing Depression[J]. Earth Science, 2023, 48(3): 1080-1092(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303017.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  444
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 录用日期:  2023-04-12
  • 修回日期:  2023-04-11

目录

    /

    返回文章
    返回