留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RAMMS数值模拟的短时强降雨型泥石流危险性评价

庞海松 谢骏锦 张小明 王官贺 张明

庞海松, 谢骏锦, 张小明, 王官贺, 张明. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153
引用本文: 庞海松, 谢骏锦, 张小明, 王官贺, 张明. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153
PANG Haisong, XIE Junjin, ZHANG Xiaoming, WANG Guanhe, ZHANG Ming. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153
Citation: PANG Haisong, XIE Junjin, ZHANG Xiaoming, WANG Guanhe, ZHANG Ming. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153

基于RAMMS数值模拟的短时强降雨型泥石流危险性评价

doi: 10.19509/j.cnki.dzkq.tb20230153
基金项目: 

国家自然科学基金项目 41472264

详细信息
    作者简介:

    庞海松, E-mail: panghaisong@cug.edu.cn

    通讯作者:

    张明, E-mail: zhangming8157@126.com

  • 中图分类号: P642.23

Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation

More Information
  • 摘要:

    浙江省由短时强降雨诱发的泥石流灾害频发, 严重威胁当地居民的生命财产安全, 因此对此类泥石流进行危险性评价对浙江省"灾害智治"工作具有十分重要的理论与实际应用价值。为研究浙江短时强降雨诱发小型泥石流的危险性, 选取武山坑泥石流为对象, 通过现场调查、三维倾斜摄影与数值模拟等手段, 查明了武山坑泥石流的地质环境与发育特征, 揭示了由短时强降雨诱发的泥石流灾害链生过程特征, 选用RAMMS软件对不同降雨频率下泥石流运动特征进行了模拟, 获取了泥石流深度、流速、堆积范围等特征参数, 并基于特征参数进行了泥石流危险性评价。研究结果表明: 陡坡处松散岩土体在短时强降雨作用下发生浅层滑坡, 随后在坡面与沟道地形控制下向沟口运移, 运动过程中通过侵蚀作用扩大泥石流规模, 最终在宽缓堆积区沉积。随着研究区降雨强度增大至50 a一遇及100 a一遇, 泥石流冲出规模扩大, 但受限于堆积区宽缓的地形条件, 未能于沟口形成有效冲出; 但堆积扇上游居民区泥石流深度、流速等强度指标显著增大, 堆积区内高强度区域面积大小由7 276 m2增大至12 660 m2。结合泥石流活跃性分析结果, 采取形成区雨量监测、主沟谷流通区构建刚性、柔性或狭缝拦挡坝以及堆积区设置导流渠相结合的治理措施, 可有效保障居民生命财产安全。研究成果可为武山坑及浙江省此类泥石流危险性评价、防治工程设计提供参考。

     

  • 图 1  研究区地理位置图

    Figure 1.  Location of the study area

    图 2  泥石流流域地质简图

    Figure 2.  Geological sketch of debris flow watershed

    图 3  泥石流期间降雨数据

    Figure 3.  Rainfull data during debris flow

    图 4  武山坑泥石流发育特征

    a.泥石流分区特征;b.Ⅰ~Ⅳ号浅层滑坡;c.Ⅴ号浅层滑坡;d.沟岸浅层滑坡;e.被冲毁的建筑;f.泥石流堆积体

    Figure 4.  Development characteristics of debris flow in Wushangkeng

    图 5  滑坡-泥石流灾害链链生过程示意图(Ⅰ~Ⅴ为浅层滑坡编号)

    Figure 5.  Schematic diagram of disaster chain process governing of landslide-debris flow

    图 6  校核工况下泥石流运动特征

    a.最大泥石流深度;b.最大流动速度

    Figure 6.  Movement characteristics of debris flow under check condition

    图 7  泥石流堆积特征

    Figure 7.  Accumulation characteristics of debris flow

    图 8  泥石流危险性划分标准

    Figure 8.  Classification criteria of hozard for debris flow

    图 9  泥石流危险性分区图

    Figure 9.  Hazard zoning of debris flow

    表  1  泥石流堆积体颗粒分析及重度计算结果

    Table  1.   Results of particle analysis and gravity calculation of debris flow accumulation

    各粒径组成 计算参数 计算重度
    P05 P2 γD/(t·m-3)
    粒径/mmwB/% >2022.4 [10, 20]15.2 [5, 10)11.2 [2, 5)10.3 [0.5, 2)13.3 [0.25, 0.5)13.6 [0.05, 0.25)10 < 0.054 0.04 0.59 1.78
    注:P05为粒径 < 0.05 mm的细颗粒的体积分数,小数; P2为粒径>2mm的粗颗粒的体积分数,小数
    下载: 导出CSV

    表  2  不同降雨频率下泥石流流量计算结果

    Table  2.   Calculated results of the debris flow under different rainfall frequencies

    释放点 降雨频率p/% 降雨量/(mm·h-1) 清水洪峰流量Qp/(m3·s-1) 泥石流峰值流量Qc/(m3·s-1) 一次过程总量Q/m3
    主沟G1 5 75.1 19.7 46.1 8 762.7
    2 89.3 24.7 57.8 10 986.6
    1 100.2 28.2 66.0 12 545.3
    支沟G2 5 75.1 3.9 8.3 1 577.7
    2 89.3 4.9 10.5 1 995.8
    1 100.2 5.7 12.2 2 318.9
    下载: 导出CSV

    表  3  泥石流数值模拟精度表

    Table  3.   Accuracy of numerical simulation of debris flow

    泥石流名称 泥石流堆积面积/103 m2 冲出方量/103 m3 误差率/%
    实测值 模拟值 重合值 准确度A/% 模拟值 调查值
    武山坑泥石流 9.5 10.6 9.0 80.4 8.1 9.2 -12
    下载: 导出CSV

    表  4  泥石流强度划分

    Table  4.   Classification of debris flow intensity

    强度 堆积深度H/m 关系式 堆积深度H与流速V的乘积
    H≥2.5 OR VH≥2.5
    0.5≤H < 2.5 AND 0.5≤VH < 2.5
    0≤H < 0.5 AND VH < 0.5
    下载: 导出CSV

    表  5  各降雨频率下泥石流堆积区危险性分区统计

    Table  5.   Hazard zoning of debris flow accumulation areas under different rainfall frequencies

    降雨频率/% 高危险性 中危险性 低危险性
    面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/%
    5 7 276 32.2 9 500 42.0 5 828 25.8
    2 9 952 37.6 11 972 45.3 4 536 17.1
    1 0 0 12 660 40.5 18 576 59.5
    下载: 导出CSV
  • [1] 钱宁, 王兆印. 泥石流运动机理的初步探讨[J]. 地理学报, 1984, 39(1): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198401004.htm

    QIAN N, WANG Z Y. A preliminary study on the mechanism of debris flows[J]. Acta Geographica Sinica, 1984, 39(1): 33-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198401004.htm
    [2] 岳丽霞. 浙江省泥石流形成及成灾特点[J]. 山地学报, 2012, 30(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201201014.htm

    YUE L X. Cause and damaging characteristic of debris flow in Zhejiang Province[J]. Mountain Research, 2012, 30(1): 87-92. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201201014.htm
    [3] 冯杭建, 周爱国, 唐小明, 等. 浙江省泥石流灾害发育分布规律及区域预报[J]. 地球科学, 2016, 41(12): 2088-2099. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612012.htm

    FENG H J, ZHOU A G, TANG X M, et al. Development and distribution characteristics of debris flow in Zhejiang Province and it's regional forecast[J]. Earth Science, 2016, 41(12): 2088-2099. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612012.htm
    [4] 崔鹏, 郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术, 2021, 53(3): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm

    CUI P, GUO J. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences, 2021, 53(3): 5-18. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm
    [5] 万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J]. 中国地质, 2023, 50(3): 911-925. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202303017.htm

    WAN F P, YANG W M, QIU Z L, et al. Disaster mechanism and evolution of Nagune gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, 2023, 50(3): 911-925. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202303017.htm
    [6] 袁丽侠, 崔星, 王州平, 等. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报, 2009, 18(2): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200902023.htm

    YUAN L X, CUI X, WANG Z P, et al. Cause mechanism of Xianrentan debris flow in Yueqing City, Zhejiang Province[J]. Journal of Natural Disasters, 2009, 18(2): 150-154. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200902023.htm
    [7] 张春山, 张业成, 张立海. 中国崩塌、滑坡、泥石流灾害危险性评价[J]. 地质力学学报, 2004, 10(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200401004.htm

    ZHANG C S, ZHANG Y C, ZHANG L H. Danger assessment of collapses, landslides and debris flows of geological hazards in China[J]. Journal of Geomechanics, 2004, 10(1): 27-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200401004.htm
    [8] CHEN P Y, YANG H M, LIU Y, et al. Evaluation of debris flow risk based on independent information data fluctuation weighting method[J]. Rock and Soil Mechanics, 2013, 34(2): 449-454.
    [9] 刘加龙, 吕希奎, 刘贵应. 模糊综合评判法在泥石流灾度评价中的应用[J]. 地质科技情报, 2001, 20(4): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200104022.htm

    LIU J L, LV X K, LIU G Y, Fuzzy comprehensive evaluation method to evaluate debris flow hazard degree[J]. Geological Science and Technology Information, 2001, 20(4): 86-88. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200104022.htm
    [10] PAN W, JIAN L, LIU T. Grey system theory trends from 1991 to 2018: A bibliometric analysis and visualization[J]. Scientometrics, 2019, 121(3): 1407-1434. doi: 10.1007/s11192-019-03256-z
    [11] VASU N N, LEE S, LEE D, et al. A method to develop the input parameter database for site-specific debris flow hazard prediction under extreme rainfall[J]. Landslides, 2018, 15(8): 1523-1539. doi: 10.1007/s10346-018-0971-7
    [12] 胡进, 朱颖彦, 杨志全, 等. 中巴公路沿线冰川泥石流的形成与危险性评估[J]. 地质科技情报, 2013, 32(6): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306028.htm

    HU J, ZHU Y Y, YANG Z Q, et al. Formation and hazard evaluation of glacial debris flow disasters along international Karakoram Highway[J]. Geological Science and Technology Information, 2013, 32(6): 181-185. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306028.htm
    [13] 胡凯衡, 崔鹏, 田密, 等. 泥石流动力学模型和数值模拟研究综述[J]. 水利学报, 2012, 43(增刊2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2012S2015.htm

    HU K H, CUI P, TIAN M, et al. A review of the debris flow dynamic models and numerical simulation[J]. Journal of Hydraulic Engineering, 2012, 43(S2): 79-84. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2012S2015.htm
    [14] 乔成, 欧国强, 潘华利, 等. 泥石流数值模拟方法研究进展[J]. 地球科学与环境学报, 2016, 38(1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201601016.htm

    QIAO C, OU G Q, PAN H L, et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 134-142. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201601016.htm
    [15] TRUJILLO-VELA M G, RAMOS-CAÑÓN A M, ESCOBAR-VARGAS J A, et al. An overview of debris-flow mathematical modelling[J]. Earth-Science Reviews, 2022, 232: 104135. doi: 10.1016/j.earscirev.2022.104135
    [16] 甘建军, 罗昌泰. 中低山冲沟型泥石流运动参数及过程模拟[J]. 自然灾害学报, 2020, 29(2): 97-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202002010.htm

    GAN J J, LUO C T. Runout and process simulation of gully debris flow in middle and low mountains[J]. Journal of Natural Disasters, 2020, 29(2): 97-110. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202002010.htm
    [17] 侯圣山, 曹鹏, 陈亮, 等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质, 2021, 48(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102017.htm

    HOU S S, CAO P, CHENG L, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143-151. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102017.htm
    [18] CHANG M, TANG C, VANASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake stricken area, Southwest China[J]. Landslides, 2017, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9
    [19] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [20] 梁恒, 李吉林, 刘发明, 等. 基于光滑粒子流体动力学方法的泥石流冲击桥墩试验模拟[J]. 岩土力学, 2021, 42(5): 1473-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105029.htm

    LIANG H, LI J L, LIU F M, et al. Simulation of debris flow impacting bridge pier tests based on smooth particle hydromechanics method[J]. Rock and Soil Mechanics, 2021, 42(5): 1473-1484. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105029.htm
    [21] 樊圆圆, 宋玲, 孙雯. 基于PFC的冰碛土泥石流起动过程模拟研究[J]. 干旱区资源与环境, 2021, 35(3): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202103021.htm

    FAN Y Y, SONG L, SUN W. A simulation study on the starting process of moraine debris flow based on PFC[J]. Journal of Arid Land Resources and Environment, 2021, 35(3): 140-146. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202103021.htm
    [22] 王沁, 姚令侃. 格子Boltzmann方法及其在泥石流堆积研究中的应用[J]. 灾害学, 2007, 22(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200703001.htm

    WANG Q, YAO L K. Lattice Boltzmann method and its application in the study on deposition of debris flow[J]. Journal of Catastrophology, 2007, 22(3): 1-5. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200703001.htm
    [23] KONG Y, ZHAO J, LI X Y, et al. Coupled CFD/DEM modeling of multiphase debris flowover a Natural Erodible Terrain?The Yu-Tung Road Case[C]//Anon. 2nd JTC1 International Conference on Triggering & Propagation of Rapid Flow-like Landslides. Hong Kong: [s.n.], 2018.
    [24] KONG Y, GUAN M F, ZHAO J D, et al. Bi-linear laws govern the impacts of debris flows, debris avalanches and rock avalanches on flexible barrier[J]. Journal of Geophysical Research(Earth Surface), 2022, 127: e2022JF006870.
    [25] KONG Y, LI X Y, ZHAO J D. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology, 2021, 289: 106188. doi: 10.1016/j.enggeo.2021.106188
    [26] 刘波, 胡卸文, 何坤, 等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质, 2021, 48(5): 150-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105016.htm

    LIU B, HU X W, HE K, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150-160. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105016.htm
    [27] 余斌. 稀性泥石流容重计算的改进方法[J]. 山地学报, 2009, 27(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200901014.htm

    YU B. Research on the improver calculating density of less viscosity debris flows[J]. Mountain Research, 2009, 27(1): 70-75. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200901014.htm
    [28] LIU W, YANG Z J, HE S M. Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation[J]. Landslides, 2020, 18(1): 3-58.
    [29] AN H, OUYANG C, WANG F, et al. Comprehen-sive analysis and numerical simulation of a large debris flow in the Meilong catchment, China[J]. Engineering Geology, 2022, 298: 106546. doi: 10.1016/j.enggeo.2022.106546
    [30] QUAN-LUNA B, BLAHUT J, VAN WESTEN C J, et al. The application of numerical debris flow modelling for the generation of physical vulnerability curves[J]. Natural Hazards and Earth System Science, 2011, 11(7): 2047-2060. doi: 10.5194/nhess-11-2047-2011
    [31] 常鸣, 窦向阳, 唐川, 等. 降雨驱动泥石流危险性评价[J]. 地球科学, 2019, 44(8): 2794-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm

    CHANG M, DOU X Y, TANG C, et al. Hazard assessment of typical debris flow induced by rainfall intensity[J]. Earth Science, 2019, 44(8): 2794-2802. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm
    [32] CHANG M, LIU Y, ZHOU C, et al. Hazard assessment of a catastrophic mine waste debris flow of Hou gully, Shimian, China[J]. Engineering Geology, 2020, 275: 105733.
    [33] OUYANG C, WANG Z, AN H, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan gully, Wudu, China[J]. Engineering Geology, 2019, 263: 105351.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  85
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-07-28

目录

    /

    返回文章
    返回