Discussion on dynamic orebody modeling with geological science big data
-
摘要: 三维地学建模的理论与方法在大数据时代该如何发展,是当下这一领域研究人员非常关注的问题。从现代三维地学建模的重要方法——隐式建模的角度,对三维地学建模方法与地质大数据系统的有机集成、以及如何利用大数据技术提高地学建模的效率和质量等问题进行了探讨。初步提出了一套基于地质科学大数据的三维地学建模方法和流程,包括:地质大数据的搜集、主题大数据系统的搭建、地质特征要素的深度挖掘和三维地学模型的动态构建。同时,也指出了大数据背景下高质效三维地学建模的关键在于:研究实现充分顾及地质对象和地质科学大数据特点的地学人工智能、机器学习、数据挖掘及空间推断方法。通过一个典型矿体建模的应用实例对所提方法的可行性进行了验证。Abstract: As a key technology of geological information systems and an important method for geological information science, three dimensional geoscience modelling (3DGM) faces many opportunities and challenges in the age of big data. Many experts in this field are discussing ways to improve 3DGM in this context. From the point view of 3D implicit modeling, an up-to-date 3DGM method, this paper discusses several issues on this point such as the integration of a geological big data system and 3DGM, and the possible ways to enhance the quality and efficiency of 3DGM based on big data technologies. The paper proposes an initial integration framework of big data based 3DGM consisting of data collection, construction of subject-oriented big data system, geological feature mining and dynamic orebody modeling. This research also suggests that the approaches of geological artificial intelligence, machine learning, data mining, and predication should be designed and applied with full consideration of essential characteristics of the geological objects under study, which is crucial to improve the modeling result. The feasibility of the proposed method is illustrated by a case study on orebody modeling.
-
表 1 三维地学显式建模与隐式建模的主要实施过程及方法原理对比
Table 1. Comparison between basic principles and methods of three dimensional explicit and implicit geological modeling
建模方法类型 所依赖的方法原理及基础 输入数据的基本类型和特征 关键算法 计算结果的常见体现形式 显式建模 建模人员的主观认识 类型和尺度相对一致的勘探工程及剖面分析数据等 交互式的几何图形绘制算法 仅能展示地质对象的空间形态 隐式建模 建模对象的数学模型 多类型、多尺度的勘探工程及剖面分析数据等 空间插值、模拟和等值面生成算法 可同时展示地质对象的空间形态、精细地质属性及其不确定性 表 2 三维地学显式建模与隐式建模的性能和特征对比
Table 2. Comparison between basic characteristics and performances of three dimensional explicit and implicit geological modeling
建模方法类型 是否能融入地质认识 是否能服从取样数据 是否需要大量人机交互 建模速度 是否可以重现建模结果 动态更新的难易程度 能否同时生成多个模型 显式建模 是 是 是 慢 几乎不能 困难 不能 隐式建模 是 是 否 快 可以 简单 能 -
[1] 吴冲龙, 刘刚, 田宜平, 等.论地质信息科学[J].地质科技情报, 2005, 24(3):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200503001 [2] 吴冲龙, 翁正平, 刘刚, 等.论中国"玻璃国土"建设[J].地质科技情报, 2012, 31(6):1-8. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201206002.htm [3] 吴冲龙, 刘刚, 田宜平, 等.论地质信息科学[J].地质科技情报, 2005, 24(3):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200503001 [4] 翟明国, 杨树锋, 陈宁华, 等.大数据时代:地质学的挑战与机遇[J].中国科学院院刊, 2018, 33(8):825-831. doi: 10.16418/j.issn.1000-3045.2018.08.009 [5] 周永章, 陈烁, 张旗, 等.大数据与数学地球科学研究进展:大数据与数学地球科学专题代序[J].岩石学报, 2018, 34(2):255-263. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201802001.htm [6] 郭华东, 王力哲, 陈方, 等.科学大数据与数字地球[J].科学通报, 2014, 59(12):1047-1054. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201412001 [7] 吴冲龙, 刘刚.大数据与地质学的未来发展[J].地质通报, 2019, 38(7):1081-1088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201907001 [8] 吴冲龙, 刘刚, 张夏林, 等.地质科学大数据及其利用的若干问题探讨[J].科学通报, 2016, 61(16):1797-1807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201616010 [9] Zhang Z, Wu C, Mao X, et al.Method and technique of 3-D dynamic structural evolution modelling of fault basin[J].International Journal of Oil, Gas and Coal Technology, 2013, 6(1/2):40-62. doi: 10.1504/IJOGCT.2013.050775 [10] 何珍文, 吴冲龙, 刘刚, 等.地质空间认知与多维动态建模结构研究[J].地质科技情报, 2012, 31(6):46-51. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201206009.htm [11] 张夏林, 吴冲龙, 周琦, 等.贵州超大型锰矿集区的多尺度三维地质建模[J].地球科学, 2020, 45(2):634-644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx202002021 [12] 翁正平, 何珍文, 毛小平, 等.三维可视化动态地质建模系统研发与应用[J].地质科技情报, 2012, 31(6):59-66. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201206011.htm [13] 张军强, 吴冲龙, 刘刚, 等.空间集成方式的三维地质图编绘关键技术[J].吉林大学学报:地球科学版, 2014, 44(3):1055-1062. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201403036 [14] Houlding S W.3D Geosciencemodeling, computer techniques for geological characterization[M].Berlin:Springer-Verlag, 1994. [15] Wu L.Topological relations embodied in a generalized tri-prism(GTP) model for a 3D geoscience modeling system[J].Computers & Geosciences, 2004, 30(4):405-418. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=684438568267d7ae138f7ccec6d097b1 [16] Zhong D, Li M, Song L, et al.Enhanced NURBS modeling and visualization for large 3D geoengineering applications:An example from the Jinping first-level hydropower engineering project, China[J].Computers & Geosciences, 2006, 82(11):1581-1593. [17] Wu Q, Xu H, Zou X.An effective method for 3D geological modeling with multi-source data integration[J].Computers & Geosciences, 2005, 35(1):70-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59a1e1ff6b9000d603ea1a8baa38323d [18] Hou W, Yang L, Deng D, et al.Assessing quality of urban underground spaces by coupling 3D geological models:The case study of Foshan City, South China[J].Computers & Geosciences, 2016, 89:1-11. doi: 10.1016/j.cageo.2015.07.016 [19] 陈国旭, 田宜平, 张夏林, 等.基于勘探剖面的三维地质模型快速构建及不确定性分析[J].地质科技情报, 2019, 38(2):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902033 [20] 张文彪, 段太忠, 刘彦锋, 等.定量地质建模技术应用现状与发展趋势[J].地质科技情报, 2019, 38(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903029 [21] 花卫华.多约束下复杂地质模型快速构建与定量分析[D].武汉: 中国地质大学(武汉), 2010. [22] Lajaunie C, Courrioux G, Manuel L.Foliation fields and 3D cartography in geology:Principles of a method based on potential interpolation[J].Mathematical Geology, 1997, 29(4):571-584. doi: 10.1007/BF02775087 [23] Cowan J, Beatson R, Ross H J, et al.Practical implicit geological modelling[C]//Dominy S.5th international mining geology conference, Bendigo, Vic.Bendigo: BPA Digital, 2003. [24] Cowan J, Beatson R, Fright W R, et al.Rapid geological modelling[C]//Vearncombe S.Appliced structural geology for mineral exploration and mining, international symposium.Sydey: Australia Institute of Geoscientist(AIG), Buttelin, 2002. [25] 胡金星, 吴立新, 高卫贞, 等.三维地学模拟体视化技术的应用研究[J].煤炭学报, 1999, 24(4):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901016776 [26] 李仲学, 李翠平.矿床仿真及体视化技术[J].计算机仿真, 2000, 17(5):6-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfz200005002 [27] 李翠平, 李仲学, 赵文广.矿床的体视化及仿真系统框架[J].金属矿山, 2001(10):44-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200110015 [28] Mao P, Jun L, Zhangang W, et al.Application of 3-D geoscience modeling technology for the estimation of solid mineral reserves[J].Acta Geologica Sinica, 2009, 83(3):655-660. doi: 10.1111/j.1755-6724.2009.00064.x [29] Li C, Li Z, Wang Y, et al.Some improvements of the marching cubes algorithm for the rendering of an orebody[J].Journal of China University of Mining and Technology, 2008, 18(2):194-198. doi: 10.1016/S1006-1266(08)60041-3 [30] 李章林, 吴冲龙, 张夏林, 等.属性-结构(P-S)矿体动态建模方法[J].地球科学:中国地质大学学报, 2013, 38(6):1331-1338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201306017 [31] 李章林, 张夏林, 翁正平, 等.动态构建福建紫金山铜金矿矿体模型[J].吉林大学学报:地球科学版, 2011, 41(3):945-952. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201103048 [32] 李章林, 吴冲龙, 张夏林, 等.基于三维块体模型的矿体动态构模方法[J].矿业研究与开发, 2011, 31(1):60-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kyyjykf201101020 [33] 毕林, 刘晓明, 陈鑫, 等.一种基于矿体轮廓线的三维建模新方法[J].武汉大学学报:信息科学版, 2016, 41(10):1359-1365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201610013 [34] 毕林, 赵辉, 李亚龙.基于Biased-SVM和Poisson曲面矿体三维自动建模方法[J].中国矿业大学学报, 2018, 47(5):1123-1130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201805021 [35] 邹艳红, 黄望, 阳宽达, 等.基于杨赤中推估法空间插值的三维地质隐式建模[J].地质学刊, 2017, 41(3):384-393. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201703004 [36] 唐丙寅, 吴冲龙, 李新川.一种基于TIN-CPG混合空间数据模型的精细三维地质模型构建方法[J].岩土力学, 2017, 38(4):1218-1225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201704037 [37] 郭甲腾, 吴立新, 王江梅, 等.基于隐式化Coons曲面的局部地质构造区域集成建模方法[J].地理与地理信息科学, 2018, 34(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201801001 [38] 张夏林, 吴冲龙, 翁正平, 等.数字矿山软件(QuantyMine)若干关键技术的研发和应用[J].地球科学:中国地质大学学报, 2010, 35(2):302-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201002015 [39] Cowan J.Six reasons why Micromine's new implicit modelling software could triumph over Leapfrog[Z].2013: 2019. [40] Reid R.MineSight Implicit Modeller was the first Leapfrog competitor but does it stack up?[Z].27: 2019. [41] Myers D E.Spatial interpolation:An overview[J].Geoderma, 1994, 62(1):17-28. doi: 10.1016/0016-7061(94)90025-6 [42] Li J, Heap A D.Spatial interpolation methods applied in the environmental sciences:A review[J].Environmental Modelling & Software, 2014, 53:173-189. doi: 10.1016/j.envsoft.2013.12.008 [43] Li J, Heap A D.A review of comparative studies of spatial interpolation methods in environmental sciences:Performance and impact factors[J].Ecological Informatics, 2011, 6(3):228-241. doi: 10.1016/j.ecoinf.2010.12.003 [44] Yao L, Dimitrakopoulos R, Gamache M.A new computational model of high-order stochastic simulation based on spatial legendre moments[J].Mathematical Geosciences, 2018, 50(8):929-960. doi: 10.1007/s11004-018-9744-z [45] Dimitrakopoulos R, Mustapha H, Gloaguen E.High-order statistics of spatial random fields:Exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena[J].Mathematical Geosciences, 2010, 42(1):65-99. doi: 10.1007/s11004-009-9258-9 [46] Goovaerts P.Geostatistics for natural resources evaluation[M].New York:Oxford University Press, 1997. [47] Chen Q, Mariethoz G, Liu G, et al.Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections[J].Hydrol.Earth Syst.Sci., 2018, 22(12):6547-6566. doi: 10.5194/hess-22-6547-2018 [48] Mariethoz G, Caers J.Multiple-point geostatistics: Stochastic Modeling with Training Images[M].: Wiley, 2014. [49] Yang L, Hou W, Cui C, et al.GOSIM:A multi-scale iterative multiple-point statistics algorithm with global optimization[J].Computers & Geosciences, 2016, 89:57-70. doi: 10.1016/j.cageo.2015.12.020 [50] 张宝一, 代鹏遥, 蒙菲, 等.基于距离场的三维矿体模型与地表化探数据的关联关系分析:以红透山铜矿田为例[J].地质论评, 2017, 63(2):511-524. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZSYD201610001080.htm [51] 张宝一, 陆浩, 杨莉, 等.顾及梯度的高斯混合模型在三维属性场空间聚类中的应用[J].地质找矿论丛, 2019, 34(3):460-470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201903017 [52] Lorensen W C H.Marching cubes:A high resolution 3D surface construction algorithm[J].Computer Graphics, 1987, 21(3):163-169. [53] Nielson G M.On marching cubes[J].IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3):283-297. doi: 10.1109/TVCG.2003.1207437 [54] Newman T S, Yi H.A survey of the marching cubes algorithm[J].Computers & Graphics, 2006, 67(5):592-603. doi: 10.1016/j.cag.2006.07.021 [55] Li Z, Zhang X, Clarke K C, et al.An automatic variogram modeling method with high reliability fitness and estimates[J].Computers & Geosciences, 2018, 120:48-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b125b347de625da0822d1ba050ec1fc5 [56] 朱月琴, 谭永杰, 张建通, 等.基于Hadoop的地质大数据融合与挖掘技术框架[J].测绘学报, 2015, 44(增刊1):152-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb2015z1023 [57] 李超岭, 李丰丹, 李健强, 等.智能地质调查体系与架构[J].中国地质, 2015, 42(4):828-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201504003 [58] 李超岭, 李健强, 张宏春, 等.智能地质调查大数据应用体系架构与关键技术[J].地质通报, 2015, 34(7):1288-1299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201507006 [59] 何珍文, 郑祖芳, 刘刚, 等.动态广义表空间索引方法[J].地理与地理信息科学, 2011, 27(5):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201105002