Major controlling factors and enrichment rules of highly efficient gas reservoiring in the north-central part of the central inversion belt, Xihu Depression
-
摘要: 西湖凹陷中央反转带中北部大型气田成藏因素及动态匹配关系至今不明。通过针对烃源岩、储层、输导体系及成藏期等成藏关键因素进行系统分析,建立"源-储-圈-输"的动态成藏过程分析中央反转带中北部大气田的成藏主控因素。研究表明始新统宝石组与平湖组煤系烃源岩不仅生气强度大,而且中新世晚期以来的快速生、排气为中央反转带中北部的大中型天然气藏提供了充足油气源;花港组小于4 000 m地层的酸性地层水是形成有利储层的关键;中新世晚期发生的龙井运动强烈挤压作用使中央反转带发生了构造变形和断层开启活动,为圈闭和油气输导通道的形成创造了条件。综合"源-储-圈-输"分析认为成藏主控因素在生烃期的有机耦合造就了始新统煤系烃源岩高效生气及天然气的有效运移聚集成藏的全过程。本次研究为研究区大气田的勘探提供了借鉴。Abstract: The main controlling factors of reservoir formation and dynamic matching relationship of large gas fields in the north-central part of the central inversion belt, Xihu Depression are still unknown. Based on the systematic analysis of the key reservoir forming factors such as source rock, reservoir, transportation system and reservoir forming period, this paper establishes the dynamic reservoir forming process of "source-reservoir-Circle-Transportation" to analyze the main reservoir forming factors of the large gas field in the north of China. The results show that the source rocks of the coal measures of Baoshi Formation and Pinghu Formation in Eocene not only have a strong accumulation of gas, but also have provided sufficient oil and gas sources for the large and medium-sized natural gas reservoirs in the north-central part of the central inversion belt since the Late Miocene. The acid formation water is the key to affect the physical properties of the reservoirs. The strong compression of Longjing movement in the Late Miocene resulted in structural deformation and faults in the central inversion belt. And opening activities created conditions for the formation of traps and oil-gas transport channels. Based on the analysis of "Source-Reservoir-Circle-Transportation", we suggest that the organic coupling between the main factors of reservoir formation and hydrocarbon generation period results in the whole process of efficient gas generation of source rock and effective migration and accumulation of natural gas in Eocene coal series. The research results provide reference for the exploration of atmospheric field in the study area.
-
图 5 中央反转带中北部花港组主力储层镜下特征
A.Z1井,4 324.8 m,扫描电镜,早期绿泥石膜;B.Z1井,4 324.2 m,扫描电镜,长石溶解过程中的硅质胶结;C.Z2井,3 127.3 m,扫描电镜,自生高岭石充填长石溶蚀孔;D.Z2井,4 605.6 m,扫描电镜,自生石英颗粒溶解;E.Z3井,3 771.20 m,扫描电镜,石英加大溶蚀后绿泥石发育;F.Z1井,3 090 m,(-),长石溶蚀;G.Z2井,3 856 m,(-),长石溶蚀;H.Z3井,3 127.3 m,(-),长石及岩屑溶蚀,高岭石生成
Figure 5. Main reservoir characteristics of Huagang Formation in the north-central part of the central inversion belt
图 6 过中央反转带东西向地震剖面(剖面位置见图 1)
Figure 6. East-west seismic profile passing through the central inversion belt
表 1 西湖凹陷烃源岩地球化学参数
Table 1. Geochemical parameters of source rocks in Xihu Depression
厚度/m w(TOC)/% S1+S2/% HI/(mg·g-1) 评价 平湖组(泥岩) 500~2 000 1.76 5.83 202 中等-好 平湖组(煤岩) 30~100 43.27 120.90 260 好 宝石组(泥岩) 400~800 1.03 3.48 144 中等-好 宝石组(煤岩) 0.5~10 43.14 129 250 好 -
[1] 刘金水, 邹玮, 李宁, 等."储保耦合"控藏机制与西湖凹陷大中型油气田勘探实践[J]中国海上油气, 2019, 31(3):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201903002 [2] 高伟中, 谭思哲, 田超, 等.西湖凹陷中央反转构造带圈闭油气充满度差异性原因探讨[J]中国海上油气, 2019, 31(3):20-28. http://www.cqvip.com/QK/96273A/201903/7002247214.html [3] 叶加仁, 顾慧荣, 贾健谊.东海西湖凹陷油气地质条件及其勘探潜力[J].海洋地质与第四纪地质, 2008, 28(4):221-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200804014 [4] 熊斌辉, 张喜林, 张锦伟, 等.西湖凹陷油气成藏的主控因素[J].海洋石油, 2008, 28(2):14-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200802003 [5] 胡梦颖, 李三忠, 戴黎明, 等.西湖凹陷中北部反转构造动力学机制的数值模拟[J].海洋地质与第四纪地质, 2017, 37(4):155-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201704010 [6] 张国华.西湖凹陷高压形成机制及其对油气成藏的影响[J].中国海上油气, 2013, 15(2):7-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201302002 [7] 郑军.西湖凹陷中央背斜带中北部深部优质储层孔隙保存机理[J].地质科技情报, 2016, 35(3):173-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201603022 [8] 张国华, 刘金水, 秦兰芝, 等.西湖凹陷渐新统花港组大型辫状河沉积体系特征[J].中国海上油气, 2018, 30(3):10-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201803002 [9] 胡明毅, 柯岭, 梁建设.西湖凹陷花港组沉积相特征及相模式[J].石油天然气学报, 2010, 32(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb201005001 [10] 彭己君, 张金川, 唐玄, 等.低渗透背景下西湖凹陷致密砂岩气藏的成藏条件[J].地质科技情报, 2015, 34(3):112-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201503014 [11] 孙思敏, 彭仕宓.东海西湖凹陷平湖油气田花港组高分辨率层序地层特征[J].石油天然气学报, 2006, 28(4):184-187. http://www.cnki.com.cn/Article/CJFDTotal-JHSX200604053.htm [12] 张建培, 徐发, 钟韬, 等.东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化[J].海洋地质与第四纪地质, 2012, 32(1):35-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201006 [13] 中海石油(中国)有限公司上海分公司.西湖凹陷油气有机地球化学研究[R].上海:中海石油(中国)有限公司上海分公司, 2018. [14] 贺礼文, 陈践发, 刘凯旋, 等.西湖凹陷北部气田天然气地球化学特征及气源探讨[J].天然气工业, 2019, 39(5):59-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201905007 [15] 高伟中, 孙鹏, 赵洪, 等.西湖凹陷花港组深部储层特征及控制因素[J].成都理工大学学报:自然科学版, 2016, 43(4):396-404. http://www.cnki.com.cn/Article/CJFDTotal-CDLG201604002.htm [16] 张武, 侯国伟, 肖晓光, 等.西湖凹陷低渗储层成因及优质储层主控因素[J].中国海上油气, 2019, 31(3):40-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201903005 [17] 刘金水, 曹冰, 徐志星, 等.西湖凹陷某构造花港组沉积相及致密砂岩储层特征[J].成都理工大学学报:自然科学版, 2012, 39(2):130-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201202003 [18] 徐昉昊, 徐国盛, 刘勇, 等.东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素[J].石油勘探与开发, 2020, 47(1):98-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf202001010 [19] 张武, 肖晓光, 苗清, 等.西湖凹陷中北部花港组优质储层主控因素及强溶蚀区预测[J].成都理工大学学报:自然科学版, 2019, 46(5):597-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201905010 [20] 蔡全升, 胡明毅.西湖凹陷黄岩构造带花港组砂岩储层成岩作用研究[J].科学技术与工程, 2013, 30(2):9012-9017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201330029 [21] 龚再升.中国近海含油气盆地新构造运动和油气成藏[J].石油与天然气地质, 2004, 25(2):133-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200402003 [22] 蒋一鸣, 邹玮, 刘金水, 等.东海西湖凹陷中新世末反转背斜构造成因机制:来自基底结构差异的新认识[J].地球科学, 2020, 45(3):968-979. http://www.cnki.com.cn/Article/CJFDTotal-DQKX202003021.htm [23] 张敏强, 钟志洪, 夏斌, 等.东海西湖凹陷中南部晚中新世构造反转与油气运聚[J].中国海上油气, 2005, 17(2):73-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc200502001 [24] Mclimans P K.The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs[J].Applied Geochemistry, 1987(2):585-603. http://www.sciencedirect.com/science/article/pii/0883292787900114 [25] England W A, Mackenize A S, Mann D M, et al.The movement and entrapment of petroleum fluids in the subsurface[J].J.Geol.Soc., London, 1987, 144:327-347. http://adsabs.harvard.edu/abs/1987JGSoc.144..327E [26] 吴悠, 王海红, 罗顺社, 等.鄂尔多斯盆地镇原地区延长组长8段致密砂岩油藏差异油气充注历史[J].地质科技情报, 2018, 37(1):153-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201801021