Landslide susceptibility assessment based on multi-model fusion method: A case study in Wufeng County, Hubei Province
-
摘要: 不同的易发性评价模型可以得到有差异的滑坡空间预测结果,选取最优模型甚至综合各模型的优势是提高易发性评价精度的有效方法。为检验模型融合思路的有效性,以鄂西地区五峰县渔洋关镇为研究区,提取坡度、地层、断层、河流、公路等7个滑坡成因条件,分别采用信息量模型、证据权模型和频率比模型进行滑坡易发性评价;并将3种模型分别进行归一化、主成分分析(PCA,Principal component analysis)和优势融合,得到了6幅易发性分区图。结果表明:优势耦合模型精度最高(90.3%),频率比模型次之(89.7%),归一化融合模型和PCA融合模型分别为89.3%和89.1%,以上4种结果的精度均高于证据权模型(87.7%)和信息量模型(87.6%);6幅预测图对应的评价结论与历史滑坡空间分布的实际情况相符。空间一致性对比结论表明,主成分融合模型与优势耦合模型的同格率高达68%,其预测结果避免了单个模型预测结论带来的偶然性和片面性,说明多模型融合方法与优势耦合模型在提高滑坡易发性预测精度上是可行性的,该思路对其他地区滑坡灾害易发性评价具有借鉴意义。Abstract: Different landslide spatial prediction maps can be worked out from different landslide susceptibility models. It is efficient to choose the best optimal model or to integrate some models together in order to enhance the accuracy of landslide susceptibility. For the sake of testing the effectiveness of fusion models, the information model, the weights of evidence model and the frequency ratio model were used to predict the landslide susceptibility with the landslide controlling factors, such as slope, lithology, fault, river and road, in Yuyangguan Town, Wufeng County, Hubei Province. Then landslide susceptibility maps from three models were fused through normalized fusion method, principal component analysis fusion method and advantage fusion method. Comparatively, the accuracy resulting from advantage fusion method (90.3%) is highest among all that of other landslide susceptibility maps, including frequency ratio method (89.7%), normalized fusion method (89.3%), PCA fusion method (89.1%), weights of evidence mothed (87.7%) and information value method (87.6%). In the result of spatial agreement analysis, 68% area maps have the same class in the maps from advantage fusion method and PCA fusion method, decreasing the contingency and one-sidedness of single model. The study verifies the feasibility of the model fusion, and can provide a reference for landslide evaluation in the other geological environment.
-
表 1 成灾因子的信息量值(I)、证据权值(C)和频率比值(F)
Table 1. Information value (I), weights of evidence value (C) and frequency ratio value (F) of landslide affecters
成灾因子 分级指标 I C F 高程/m [0, 170] 0 0 0 (170, 204] -0.49 -1.25 0.33 (204, 306] 0.26 1.56 1.84 (306, 442] -0.24 -0.72 0.58 (442, 680] 0 -0.12 0 坡度/(°) [0, 15] -0.41 -1.2 0.39 (15, 40] 0.16 1.37 1.46 (40, 55] -0.46 -1.12 0.35 (55, 90] 0 -0.01 0 坡向 平地 -1.84 -4.38 0.01 北 0.15 0.37 1.40 东北 -0.05 -0.14 0.89 东 0.21 0.54 1.60 东南 -0.36 -0.9 0.44 南 -0.03 -0.08 0.93 西南 -0.63 -1.55 0.23 西 0.05 0.14 1.13 西北 0.21 0.59 1.63 北 0.45 1.2 2.85 至公路距离/m > 50 -0.01 -0.12 0.99 ≤50 0.05 0.12 1.11 地层岩性
(分级指标代号同图 1)Qal+pl -2.21 -5.19 0.01 Qdl+el 0.77 2.44 5.83 P1mn 0 -0.01 0 P1q 0 -0.01 0 C2hn 0 0 0 D3x 0 -0.01 0 D3h 0 -0.01 0 D2y 0 -0.06 0 S2s 0.16 0.48 1.43 S1lr -0.22 -0.6 0.6 S1l 0 -0.15 0 O2b 0 -0.04 0 O2g 0.51 1.27 3.26 O1d -2.06 -4.79 0.01 O1h 0 -0.04 0 O1n 0 -0.04 0 ∈2sn 0 -0.01 0 至断层距离/m > 100 0.01 0.24 1.03 ≤100 -0.09 -0.24 0.81 至河流距离/m > 50 0.01 0.19 1.03 ≤50 -0.07 -0.19 0.85 表 2 主成分融合模型与优势耦合模型预测易发性等级转移矩阵
Table 2. Transition matrix between PCA fusion model and advantage fusion model
所占比例/% 优势耦合模型易发等级 极高 高 中 低 极低 合计 主成分融合模型易发等级 极高 9.60 0.40 0.00 0.00 0.00 10.00 高 0.40 14.34 5.26 0.00 0.00 20.00 中 0.00 3.25 9.65 6.36 0.74 20.00 低 0.00 0.33 3.85 10.60 5.22 20.00 极低 0.00 1.67 1.25 3.04 24.04 30.00 合计 10.00 20.00 20.00 20.00 30.00 100.00 -
[1] Curden D M.A simple definition of a landslide[J].Bulletin of the International Association of Engineering Geology, 1991, 43(1):27-29. http://www.springerlink.com/content/lku4v57386836765/ [2] Varnes D J.The principles and practice of landslide hazard zonation[M].Pairs:UNESCO Press, 1984. [3] 殷坤龙, 张桂荣, 陈丽霞, 等.滑坡灾害风险分析[M].武汉:中国地质大学出版社, 2010. [4] Zhang Y, Li D, Yin K, et al.The July 1, 2017 Wangjiawan landslide in Ningxiang County, China[J].Landslides, 2018, 15(8):1657-1662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a1301109f7895f420e0d12b5f751ed4 [5] Chen L X, Yin K L, Dai Y X.Building vulnerability evaluation in landslide deformation phase[J].Journal of Mountain Science, 2011, 8(2):286-295. http://www.cnki.com.cn/Article/CJFDTotal-SDKB201102024.htm [6] 石菊松, 徐瑞春, 石玲, 等.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘, 2007, 14(6):119-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200706015 [7] Chen L X, Westen C, Hussin H, et al.Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps[J].Geomorphology, 2016, 273(15):150-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=980ae1b393ffa2521149840b1d54ae51 [8] Chen L, Guo Z, Yin K, et al.The influence of land use and land cover change on landslide susceptibility:A case study in Zhushan Town, Xuan'en County (Hubei, China)[J].Natural Hazards and Earth System Sciences, 2019, 19(10):2207-2228. http://www.researchgate.net/publication/334184530_The_influence_of_land_use_and_land_cover_change_on_landslide_susceptibility_A_case_study_in_Zhushan_Town_Xuanen_County_Hubei_China [9] Yin K, Yan T.Statistical prediction models for slope instability of metamorphosed rocks[C].Lausanne, Switzerland: Proc International Symposium on Landslides, 1988. [10] Fell R, Corominas J, Bonnard C, et al.Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J].Engineering Geology, 2008, 102(3/4):85-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6b5190b7b2b9ee63bcea7f430226d58 [11] Agterberg F.Combining indicator patterns in weights of evidence modeling for resource evaluation[J].Natural Resources Research, 1992, 1(1):39-50. doi: 10.1007/BF01782111 [12] 张俞, 殷坤龙, 郭子正, 等.库水位变动联合降雨作用下麻柳林滑坡稳定性评价[J].地质科技情报, 2019, 38(6):198-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906023 [13] 郭子正, 殷坤龙, 唐扬, 等.库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J].地质科技情报, 2017, 36(4):260-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704035 [14] Ran Q, Hong Y, Li W, et al.A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics[J].Journal of Hydrology, 2018, 563:790-801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13ca64da39d7ff72bab9042527829dca [15] 杜浩, 汪洋, 周宏, 等.基于易发性评价的地质灾害利用区域选划研究[J].地质科技情报, 2018, 37(6):266-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201806034 [16] 苏凤环, 崔鹏, 张建强, 等.芦山地震重灾区崩塌滑坡易发性评价[J].山地学报, 2013, 31(4):502-509. [17] 张向营, 张春山, 孟华君, 等.基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J].水文地质工程地质, 2018, 25(4):142-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201804021 [18] 王芳, 殷坤龙, 桂蕾, 等.不同日降雨工况下万州区滑坡灾害危险性分析[J].地质科技情报, 2018, 37(1):190-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201801026 [19] Dahal R K, Hasegawa S, Nonomura A, et al.GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping[J].Environmental Geology, 2008, 54(2):311-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f642459fa0e8a363352e79d24a76eefe [20] 郭子正, 殷坤龙, 黄发明, 等.基于滑坡分类和加权频率比模型的滑坡易发性评价[J].岩石力学与工程学报, 2019, 38(2):287-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201902008 [21] 肖汉光, 蔡从中.特征向量的归一化比较性研究[J].计算机工程与应用, 2009, 45(22):117-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcyyy200922038 [22] 陈鲤江, 景程, 吴姚鑫, 等.数学表达式的归一化方法研究[J].浙江工业大学学报, 2012, 40(2):229-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjgydxxb201202026 [23] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2013. [24] Fawcett T.An introduction to ROC analysis[J].Pattern Recognition Letters, 2006, 27(8):861-874. http://dl.acm.org/citation.cfm?id=1159475 [25] Sterlacchini S, Ballabio C, Blahut J, et al.Spatial agreement of predicted patterns in landslide susceptibility maps[J].Geomorphology, 2011, 125(1):51-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f663dd4a608d55ce9d80c05f9ff7a8e