Landslide susceptibility evaluation in Badong County based on weights of evidence method
-
摘要: 巴东县城由于其特殊的地理位置和特有的地质条件,使之成为滑坡灾害多发地带,严重威胁着巴东县城的发展,因此,有必要对巴东县城进行滑坡易发性评价研究。首先,基于GIS平台分别提取影响滑坡发生发育的各指标因子(地层岩性、地形地貌、地质构造、水文地质条件等),并划分证据层;其次,采用证据权法分别计算各证据层的权重及后验概率;然后将单元各证据层后验概率进行叠加,生成滑坡易发性分区图;最后,使用自然断点法将研究区按滑坡易发程度分为极高易发区、高易发区、中易发区、低易发区与极低易发区5类,极高易发区与高易发区面积之和约占研究区总面积的33%,其中86%的已有滑坡发生在极高易发区和高易发区,利用成功率曲线检验表明区划效果较好。Abstract: Because of its special geographical location and special geological conditions, Badong County becomes a prone zone of geological hazards, especially landslide disasters. It is necessary to research landslide susceptibility evaluation, because of its serious threat to the development of Badong County.First, we extracted the influence factors of the formation and development of landslide respectively and divided the evidence layer on GIS.The influence factors include the formation lithology, geographic and geomorphic conditions, geological structure, and hydrogeological conditions.The weights of evidence method was applied to calculate the weights of each layer of evidence and posterior probability respectively.Then, distribution chart of landslide susceptibility was generated by overlaying posterior probability of evidence layer of each unit. Finally, according to Natural Breaks law, the researched region was divided into five categories:extremely high, high, moderate, low, and extremely low by landslide susceptibility.The sum area of extremely high and high is about 33% of the total area and about 86% of existing landslides occurred in extremely high prone area and high prone area.The result shows good by using the success rate curve test that division.
-
Key words:
- landslide /
- weights of evidence method /
- posterior probability /
- susceptibility zonation
-
表 1 各评价指标的相关性
Table 1. Correlation coefficients of each factor
评价指标 地层 坡度 坡向 坡面曲率 坡高 断层 水系 植被指数 地层 1 坡度 0.152 5 1 坡向 -0.022 5 0.097 7 1 坡面曲率 -0.005 4 0.020 4 0.006 1 1 坡高 0.188 1 -0.004 0 0.012 1 -0.005 6 1 断层 -0.209 9 -0.085 8 0.032 2 -0.001 8 -0.108 8 1 水系 0.237 3 -0.058 1 -0.068 6 0.011 3 0.103 7 0.087 0 1 植被指数 0.193 9 0.230 3 0.039 0 -0.007 4 0.123 3 -0.027 2 0.006 5 1 表 2 相关性划分标准[25]
Table 2. Division standard of correlation
高相关性 中等相关性 低相关性 不相关 r≥0.8 0.5≤r<0.8 0.3≤r < 0.5 r<0.3 表 3 各评价指标证据层权重及后验概率
Table 3. Weights of evidence and posterior probability of evidence layer of each factor
指标 证据层 W+ W- Ci P后验 地层 J1x - 0.050 0 - - T3s -2.936 3 0.015 6 -2.951 9 0.003 6 T2b4+5 -1.295 1 0.076 6 -1.371 7 0.017 1 T2b3 0.694 7 -0.715 1 1.409 9 0.219 3 T2b2 0.319 9 -0.109 5 0.429 4 0.095 3 T2b1 - 0.031 4 - - T1j3 - 0.146 9 - - T1j2 - 0.118 5 - - T1j1 - 0.003 6 - - 坡度 ≤3° 0.194 2 -0.011 2 0.205 4 0.086 0 (3°,15°] 0.035 7 -0.004 7 0.040 5 0.073 9 (15°,30°] 0.261 4 -0.464 5 0.726 0 0.136 7 (30°,42°] -0.862 5 0.160 3 -1.022 8 0.026 8 (42°,57°] -2.473 7 0.045 5 -2.519 2 0.006 1 > 57° - 0.002 4 - - 坡向 [0°,30°] 0.366 9 -0.099 2 0.466 0 0.137 3 (30°,150°] -0.205 7 0.067 3 -0.273 0 0.070 6 (150°,225°] 0.397 8 -0.113 9 0.511 8 0.142 8 (225°,330°] -0.329 9 0.082 6 -0.412 6 0.062 0 >330° -0.449 2 0.055 7 -0.504 9 0.056 9 坡面曲率 ≤-7 - 0.000 8 - - (-7,-3] -0.387 3 0.005 8 -0.393 1 0.039 4 (-3,3] 0.014 0 -0.557 2 0.571 2 0.097 2 (3,7] -0.708 4 0.006 5 -0.714 9 0.028 9 >7 - 0.000 7 - - 坡高 ≤300 m 1.309 4 -1.019 8 2.329 2 0.408 5 (300,500]m -0.259 2 0.109 2 -0.368 5 0.044 5 (500,700]m -2.090 9 0.273 3 -2.364 2 0.006 3 >700 m - 0.234 5 - - 断层 ≤600 m -0.443 7 0.319 4 -0.763 2 0.043 0 (600,1 100]m 0.550 1 -0.419 9 0.970 0 0.202 7 (1 100,1 800]m -0.327 4 0.053 8 -0.381 2 0.061 8 >1 800 m - 0.003 9 - - 水系 ≤100 m -0.409 5 0.016 5 -0.425 9 0.055 6 (100,200]m -0.060 6 0.003 1 -0.063 7 0.077 9 (200,500]m 0.021 8 -0.001 2 0.023 0 0.084 4 >500 m - -0.124 4 - - 植被指数 ≤10 0.692 4 -0.042 2 0.734 6 0.201 2 (10,80] 0.300 0 -0.086 2 0.386 1 0.151 0 (80,90] 0.058 2 -0.104 7 0.162 9 0.089 6 (90,240] -0.286 2 0.383 8 -0.670 0 0.058 2 (240,255] -1.405 9 0.037 7 -1.443 6 0.027 7 说明:“-”说明该证据层中无滑坡发生,后验概率为0 表 4 各易发性等级栅格统计及滑坡比率计算
Table 4. Grid statistics and landslide ratio of each level of susceptibility
易发性等级 各等级内栅格总数b/个 各等级内滑坡栅格数c/个 各等级内栅格总数占研究区栅格比例d/% 各等级内滑坡栅格占总滑坡栅格比例e/% 滑坡比率
(e/d)极低易发区 70 028 0 13.18 0 0 低易发区 140 416 574 26.43 1.18 0.044 7 中易发区 140 678 6 355 26.48 13.09 0.494 1 高易发区 109 649 15 901 20.63 32.74 1.586 2 极高易发区 70 446 25 734 13.26 52.99 3.995 9 -
[1] 阮沈勇, 黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报, 2001, 28(1):89-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200101018 [2] 吴益平, 唐辉明, 姜玮.基于GIS的巴东新县城滑坡灾害风险系统[J].水文地质工程地质, 2003, 30(增刊1):117-121. http://www.cqvip.com/qk/90596X/2003S1/1000378977.html [3] 石菊松, 张永双, 董诚, 等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报, 2005, 26(3):275-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200503014 [4] 刘长春, 殷坤龙, 杜娟.湖北省巴东县城新城区滑坡灾害空间预测[J].中国地质灾害与防治学报, 2009, 20(4):13-18. [5] 刘斌, 殷坤龙, 刘艺梁.基于栅格数据的巴东新城区滑坡空间预测[J].地质科技情报, 2010, 29(3):133-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201003022 [6] 魏学勇, 欧阳祖熙, 董东林, 等.库水位涨落条件下滑坡渗流场特征及稳定性分析[J].地质科技情报, 2011, 30(6):128-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201106019 [7] 王芳, 殷坤龙, 桂蕾, 等.不同日降雨工况下万州区滑坡灾害危险性分析[J].地质科技情报, 2018, 37(1):190-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201801026 [8] 郭天颂, 张菊清, 韩煜, 等.基于粒子群优化支持向量机的延长县滑坡易发性评价[J].地质科技情报, 2019, 38(3):236-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903025 [9] 张艳玲, 南征兵, 周平根.利用证据权法实现滑坡易发性分区[J].水文地质工程地质, 2012, 39(2):121-125. [10] 俞布, 潘文卓, 宋健, 等.杭州市滑坡地质灾害危险性区划与评价[J].岩土力学, 2012, 33(增刊1):193-199, 216. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2012S1031.htm [11] 王志旺, 李端有, 王湘桂.区域滑坡空间预测方法研究综述[J].长江科学院院报, 2012, 29(5):78-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201205015 [12] Cheng Qiuming.Boost W of E:A new sequential weights of evidence model reducing the effect of conditional dependency[J].Mathematical Geosciences, 2015, 47(5):591-621. doi: 10.1007/s11004-014-9578-2 [13] 张生元, 成秋明, 张素萍, 等.加权证据权模型和逐步证据权模型及其在个旧锡铜矿产资源预测中的应用[J].地球科学:中国地质大学学报, 2009, 34(2):281-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200902009 [14] Liu J, Duan Z.Quantitative assessment of landslide susceptibility comparing statistical Index, index of entropy, and weights of evidence in the Shangnan Area, China[J].Entropy, 2018, 20(11):868-890. doi: 10.3390/e20110868 [15] Xie Z, Chen G, Meng X, et al.A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring:Zhouqu to Wudu segment in Bailong River Basin, China[J].Environmental Earth Sciences, 2017, 76:313. doi: 10.1007/s12665-017-6640-7 [16] Razavizadeh S, Solaimani K, Massironi M, et al.A mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models:A case study in Northern Iran[J].Environmental Earth Science, 2017, 76(6):499-515. doi: 10.1007/s12665-017-6839-7 [17] Ding Q, Chen W, Hong H.Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping[J].Geocarto International, 2017, 32(6):619-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10106049.2016.1165294 [18] Wang L, Guo M, Sawada K, et al.A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network[J].Geosciences Journal, 2016, 20(1):119-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=926714142e4dcde1d3041915e8a8b8db [19] Bonham-Carter G F, Agterberg F P, Wright D F.Weights of evidence modelling:A new approach to mapping mineral potential[J].Stat.Appl. in Earth Sci., 1989, 89(9):171-183. [20] Khoshtinat S, Aminnejad B, Hassanzadeh Y, et al.Application of GIS-based models of weights of evidence, weighting factor, and statistical index in spatial modeling of groundwater[J].IWA Publishing, 2019, 21(5):745-760. http://www.researchgate.net/publication/334383538_Application_of_GIS-based_models_of_weights_of_evidence_weighting_factor_and_statistical_index_in_spatial_modeling_of_groundwater [21] Polykretis C, Chalkias C.Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models[J].Natural Hazards, 2018, 93(1):249-274. doi: 10.1007/s11069-018-3299-7 [22] Hong H, Ilia I, Tsangaratos P, et al.A hybrid fuzzy weight of evidence method in susceptibility analysis on the Wuyuan area, China[J].Geomorphology, 2017, 290:1-16. doi: 10.1016/j.geomorph.2017.04.002 [23] Regmi A, Devkota K, Yoshida K, et al.Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J].Arabian Journal of Geosciences.2014, 7(2):725-742. doi: 10.1007/s12517-012-0807-z [24] 彭令.三峡库区滑坡灾害风险评估研究[D].武汉: 中国地质大学(武汉), 2013. [25] 余建英, 何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社, 2003. [26] Chen W, Li H, Hou E, et al.GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models[J].Science of the Total Environment, 2018, 634:853-867. doi: 10.1016/j.scitotenv.2018.04.055 [27] 李军, 周成虎.基于栅格GIS滑坡风险评价方法中格网大小选取分析[J].遥感学报, 2003, 7(2):86-92, 161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200302002 [28] 殷跃平, 胡瑞林.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报, 2004, 12(2):124-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200402003 [29] Chung C F, Fabbri A G.Probabilistic prediction models for landslide hazard mapping[J].Photogrammetric Engineering & Remote Sensing, 1999, 65(12):1388-1399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cab7eb40728fd8eecf676c102699b27 [30] Kayastha P, Dhital M R, De S F.Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal[J].Natural Hazards, 2012, 63(2):479-498. doi: 10.1007/s11069-012-0163-z