Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin
-
摘要: 渤海湾盆地碎屑物质的物源示踪研究,对于渤海湾盆地的自身演化,周缘造山带隆升和剥蚀过程,以及中国东部陆架海的物质扩散研究均具有重要意义,受到国内外学者的广泛关注,同时也存在诸多争议。钾长石是地壳中最主要的造岩矿物之一,在河流沉积物中广泛出现,在进行物源示踪研究时具有代表性。基于此,利用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)对渤海湾盆地主要注入河流的碎屑钾长石进行了原位地球化学特征分析,结果表明,黄河干流碎屑钾长石的常量元素Na2O、Al2O3、SiO2、K2O的标准偏差与滹沱河、滦河、辽河和漳河4条河流存在差异。在钾长石常量元素Al2O3质量分数与Na2O和K2O质量分数二维散点图中,部分黄河样品的Al2O3值较之整体部分(其他4条河流和黄河样品)偏低;微量元素中Ba、Pb、Sr、Rb和Ca的质量分数占主体部分,尤其Ba、Pb、Sr、Rb的含量较高。在Ba和Sr以及Ba和Pb质量分数二维散点图中,黄河与其他4条河流明显不同。该研究结果表明,钾长石的Ba和Sr含量变化可以成为环渤海湾盆地沉积物中黄河物源示踪的特征指标。Abstract: The study on provenance identification of Bohai Bay Basin is great significance to its evolution, the uplift and erosion process of the peripheral orogenic belt, and the material diffusion of the continental shelf sea in eastern China.K-feldspar is one of the most important petrogenic minerals in the earth's crust, which is widely found in the river sediments, being representative in the study of source tracing.After long-distance river transportation, its element characteristics can still well record the information of its source area.Based on these facts, in this study, we rely on the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to analyze the geochemical index from the river detrital K-feldspar of the Bohai Bay Basin.The results show that the contents of Na2O, Al2O3, SiO2, K2O of K-feldspar grains from the Yellow River are significantly different from the Hutuohe River, Luanhe River, Liaohe River and Zhanghe River.In the two-dimensional scatter diagram of Al2O3, Na2O and K2O, the Al2O3 value of some Yellow River samples is lower than the others.The contents of Ba, Pb, Sr, Rb and Ca are the main parts of trace elements, especially the first four.In the two-dimensional scatter diagrams of Ba and Sr and Ba and Pb, the Yellow River is obviously different from the other four rivers, which makes it a characteristic river in the study of provenance tracing in the Bohai Bay Basin.
-
Key words:
- Bohai Bay Basin /
- Yellow River /
- K-feldspar /
- element characteristics /
- provenance tracing
-
图 1 渤海湾盆地位置示意图(据文献[12]修改)
Figure 1. Location diagram of Bohai Bay Basin
表 1 渤海湾盆地主要注入河流的钾长石常量元素组成
Table 1. Major element compositions of K-feldspars in the river sediments around the Bohai Bay Basin
样品 SiO2 Al2O3 K2O Na2O MgO P2O5 CaO MnO FeO TiO2 Li Be wB/% DM-1
(黄河)最大值 64.7 25.3 15.7 8.89 0.280 0.136 5.83 0.038 5 0.655 0.030 7 21.00 6.90 平均值 63.7 20.8 13.8 1.30 0.014 0.034 0.45 0.001 5 0.065 0.005 6 3.70 0.50 最小值 59.7 19.9 0.34 0.37 0.0 0.013 0.0 0.0 0.003 0.000 4 0.0 0.0 HTH-1
(滹沱河)最大值 64.4 20.8 15.7 1.93 0.013 9 0.125 0.39 0.001 5 0.122 0.005 8 4.70 2.40 平均值 63.4 20.4 14.5 1.04 0.000 7 0.028 0.11 0.000 3 0.030 0.002 6 1.00 0.40 最小值 62.5 19.7 13.1 0.55 0.0 0.014 0.0 0.0 0.007 0.000 4 0.0 0.0 LH-2
(滦河)最大值 63.9 20.7 16.2 4.43 0.026 1 0.142 0.54 0.002 6 0.125 0.033 2 14.00 1.02 平均值 63.3 20.2 14.8 0.75 0.001 0 0.034 0.14 0.000 5 0.020 0.004 5 1.70 0.49 最小值 62.5 19.6 13.6 0.39 0.0 0.015 0.02 0.0 0.003 0.000 2 0.0 0.0 TA-3
(辽河)最大值 64.4 21.0 16.2 0.53 0.013 4 0.11 0.61 0.005 3 0.623 5 0.04 19.90 2.79 平均值 63.5 20.1 14.7 0.80 0.001 0 0.03 0.11 0.000 5 0.065 0 0.005 5 4.30 0.36 最小值 62.5 19.5 9.9 0.28 0.0 0.02 0.02 0.0 0.001 3 0.001 0.04 0.0 ZHH-1
(漳河)最大值 64.5 20.4 19.0 2.20 0.078 0.057 0.34 0.008 3 0.260 0.016 3 4.90 2.86 平均值 63.4 19.8 15.3 1.10 0.006 0.021 0.13 0.001 0 0.068 0.004 0.50 0.55 最小值 62.8 19.1 12.7 0.06 0.0 0.008 0.0 0.0 0.010 0.000 4 0.0 0.0 表 2 渤海湾盆地主要注入河流钾长石常、微量元素组成
Table 2. Major and trace element compositions of K-feldspars in the river sediments around the Bohai Bay Basin
样品 B Ni Sr Pb Ba wB/10-6 DM-1
(黄河)最大值 12.00 10.00 1 779 241.00 16 675 平均值 3.90 0.40 832 70.00 5 415 最小值 0.0 0.0 11 8.40 15 HTH-1
(滹沱河)最大值 5.58 2.50 990 100.00 13 721 平均值 3.30 0.10 337 44.00 3 711 最小值 0.0 0.0 23 10.00 660 LH-2
(滦河)最大值 11.30 2.60 1 154 186.00 7 163 平均值 4.02 0.14 410 72.00 3 529 最小值 0.0 0.0 73 28.3 674 TA-3
(辽河)最大值 11.10 2.20 948 132.00 7 635 平均值 4.09 0.11 305 63.40 2 283 最小值 0.0 0.0 2 7.49 3 ZHH-1
(漳河)最大值 21.10 4.42 1 015 121.00 9 625 平均值 3.43 0.13 366 41.10 2 901 最小值 0.0 0.0 3 1.64 5 -
[1] 杨守业.亚洲主要河流的沉积地球化学示踪研究进展[J].地球科学进展, 2006, 21(6):648-655. [2] 刘静, 张金玉, 葛玉魁, 等.构造地貌学:构造-气候-地表过程相互作用的交叉研究[J].科学通报, 2018, 63(1):3070-3088. [3] 林旭, 刘静, 彭保发, 等.青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J].地震地质, 2017, 39(6):1091-1110. [4] 林旭, 刘静.江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J].地震地质, 2019, 41(2):499-520. [5] 赵希涛, 胡道功, 吴中海, 等.长江三角洲地区晚新生代地质与环境研究进展述评[J].地质力学学报, 2017, 23(1):1-64. [6] 赵迎冬, 张永超, 王全利, 等.南堡凹陷物源体系发育特征与优质储层形成[J].地质科技情报, 2018, 37(1):128-134. [7] 蒋一鸣.西湖凹陷平湖斜坡带平湖组碎屑锆石U-Pb年龄及米兰科维奇旋回:对源-汇系统及沉积演化的约束[J].地质科技情报, 2019, 38(6):133-140. [8] 张建新, 范彩伟, 谭建财, 等.莺歌海盆地中新世沉积体系演化特征及勘探意义[J].地质科技情报, 2019, 38(6):51-59. [9] Li S Z, Zhao G H, Dai L M, et al.Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J].Journal of Asian Earth Sciences, 2012, 47(1):80-93. [10] 吴忱, 张秀清, 马永红.华北山地地貌面与新生代构造运动[J].华北地震科学, 1996, 14(4):40-50. [11] 徐杰, 计凤桔.渤海湾盆地构造及其演化[M].北京:地震出版社, 2015 [12] 陈洪云, 孙有斌.黄土高原风尘沉积的物质来源研究:回顾与展望[J].第四纪研究, 2008, 28(5):892-900. [13] 王中波, 杨守业, 李日辉, 等.黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J].海洋地质与第四纪地质, 2010, 30(4):73-85. [14] Xu Q, Yang J, Yuan G, et al.Stratigraphic sequence and episodes of the ancient Huanghe delta along the southwestern Bohai Bay since the LGM[J].Marine Geology, 2015, 367(1):69-82. [15] Nie J S, Stevens T, Rittner M, et al.Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J].Nature Communications, 2015, 6(1):1-8. [16] Hu Z B, Pan B T, Bridgland D, et al.The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J].Quaternary Science Reviews, 2017, 166(3):324-338. [17] Yi L, Yu H J, Ortiz J D, et al.Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329(5):101-117. [18] Yao Z, Guo Z, Xiao G, et al.Sedimentary history of the western Bohai coastal plain since the Late Pliocene:Implications on tectonic, climatic and sea-level changes[J].Journal of Asian Earth Sciences, 2012, 54(2):192-202. [19] Hu B Q, Li G, Li J, et al.Provenance and climate change inferred from Sr-Nd-Pb isotopes of Late Quaternary sediments in the Huanghe (Yellow River) delta, China[J].Quaternary Research, 2012, 78(3):561-571. doi: 10.1016/j.yqres.2012.07.005 [20] 杨守业, 蔡进功, 李从先, 等.黄河贯通时间的新探索[J].海洋地质与第四纪地质, 2001, 21(2):15-20. [21] 盛晶瑾.渤海湾西北部晚更新世以来沉积物稀土元素特征及物源意义[D].长春: 吉林大学, 2010. [22] 韩宗珠, 衣伟虹, 李敏, 等.渤海湾北部沉积物重矿物特征及物源分析[J].中国海洋大学学报:自然科学版, 2013, 43(4):73-79. [23] 王昆山, 石学法, 蔡善武, 等.黄河口及莱州湾表层沉积物中重矿物分布与来源[J].海洋地质与第四纪地质, 2010, 30(6):1-8. [24] 金秉福, 岳伟, 王昆山.黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J].海洋学报, 2014, 36(4):11-21. [25] 蓝先洪, 秦亚超, 陈晓辉, 等.渤海东部晚第四纪沉积环境变化的稀土元素地球化学记录[J].海洋通报, 2016, 35(6):674-682. [26] 陈贺贺, 朱筱敏, 黄捍东, 等.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析[J].地球科学, 2017, 42(11):1955-1971. [27] Tan M, Zhu X, Liu W, et al.Sediment routing systems in the second member of the Eocene Shahejie Formation in the Liaoxi Sag, offshore Bohai Bay Basin:A synthesis from tectono-sedimentary and detrital zircon geochronological constraints[J].Marine and Petroleum Geology, 2018, 94:95-113. doi: 10.1016/j.marpetgeo.2018.04.003 [28] 林旭.利用碎屑钾长石普通Pb同位素重建古嘉陵江、古长江自中新世以来的流向[D].武汉: 中国地质大学(武汉), 2011. [29] 张文, 刘勇胜, 胡兆初.微区原位LA-MC-ICP-MS铅同位素分析研究进展[J].矿物岩石地球化学通报, 2018, 37(5):812-826. [30] Tyrrell S, Haughton P D W, Daly J S, et al.The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England[J].Journal of Sedimentary Research, 2006, 76(2):324-345. doi: 10.2110/jsr.2006.023 [31] Clift P D, Long H V, Hinton R, et al.Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J].Geochemistry Geophysics Geosystems, 2008, 9(4):1-29. [32] Alizai A, Clift P D, Giosan L, et al.Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains[J].Geochimica et Cosmochimica Acta, 2011, 75(17):4771-4795. doi: 10.1016/j.gca.2011.05.039 [33] Shulaker D Z, Grove M, Hourigan J K, et al.Detrital K-feldspar Pb isotopic evaluation of extraregional sediment transported through an Eocene tectonic breach of southern California's Cretaceous batholith[J].Earth and Planetary Science Letters, 2019, 508(1):4-17. [34] Johnson S P, Kirkland C L, Evans N J, et al.The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J].Geoscience Frontiers, 2018, 9(5):1515-1527. doi: 10.1016/j.gsf.2018.03.009 [35] Xu Y M, Jiang S Y.In-situ analysis of trace elements and Sr-Pb isotopes of K-feldspars from Tongshankou Cu-Mo deposit, SE Hubei Province, China:Insights into early potassic alteration of the porphyry mineralization system[J].Terra Nova, 2017, 29(6):343-355. doi: 10.1111/ter.12287 [36] Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of Early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010 [37] Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87:1152-1157. doi: 10.1021/ac503749k [38] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 [39] 张宏飞, 高山.地球化学[M].北京:地质出版社, 2012. [40] Sun J M.Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters, 2005, 240(2):454-466. doi: 10.1016/j.epsl.2005.09.019 [41] Sun J M, Zhu R X.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters, 2010, 290(3):438-447. [42] Sun Y B, Tada R, Chen J, et al.Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau[J].Geophysical Research Letters, 2008, 35(1):1-5. [43] Ferrat M, Weiss D J, Strekopytov S, et al.Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2011, 75:6374-6399. doi: 10.1016/j.gca.2011.08.025 [44] Zhao W C, Liu L W, Chen J, et al.Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source[J].Science China Earth Sciences, 2019, 62(9):1-13.