Tight gas resource potential and prospect of the Lower Carboniferous in Marsel block, Kazakhastan
-
摘要: 哈萨克斯坦Marsel探区下石炭统历经多年勘探未取得重大发现,资源发现结果与评价的资源量极不匹配。为重新认识该区致密气资源潜力,利用高频层序、测井、试油、地震等资料,对下石炭统烃源岩分布、储层岩性及物性、含气饱和度等地质参数进行了重新评价,采用蒙特卡洛模拟法和小面元容积法估算了下石炭统致密气资源量,并评价了资源的平面分布特征。结果表明,Marsel探区下石炭统谢尔普霍夫阶(C1sr)和维宪阶(C1v)有效烃源岩的分布面积可达1×104 km2,探区北部烃源岩w(TOC)普遍在1.2%以上,南部基本在0.2%~1.2%之间,均处于生气高峰阶段;储层主要为礁滩相碳酸盐岩,平均孔隙度约6%,渗透率多在10×10-3 μm2以下,与烃源岩互层接触,可形成大面积连续分布的致密气聚集。蒙特卡洛模拟法估算Marsel探区下石炭统致密气90%、50%、10%概率下的可采资源量分别为1 551亿,4 001亿,8 753亿m3。小面元容积法评价结果显示,Marsel探区下石炭统致密气分布面积达6 000 km2,可采资源量4 323亿m3,平均可采资源丰度为0.7亿m3/km2,属于特低丰度致密气资源,但北部ASSA、Terekhov、KNDK等"甜点区"可采资源丰度在0.8~2.5亿m3/km2。通过借鉴水平井体积压裂开采经验,优选"甜点"钻探提高单井产量,Marsel探区下石炭统仍有望实现效益开发。Abstract: The amount of discovered resource is not in consistence with resource evaluation results at all, which leads to little significant breakthrough in tight gas exploration of the Lower Carboniferous in Marsel block of Kazakhastan.Based on the analysis of high frequency sequences, well logging, oil testing and seismic data, the hydrocarbon source rock distribution, reservoir rock types and its physical properties, gas saturation of the Lower Carboniferous in Marsel block are reanalyzed.Both Monte Carlo Simulation Method and the finite method are applied, in order to reevaluate the tight gas resource potential and distribution in Marsel block.The results show that the distribution areas of effective source rocks of Serpukhovian and Visean can reach 1×104 km2.The TOC of source rocks is above 1.2% in the north and between 0.2%—1.2% in the south in Marsel block, all in the hydrocarbon generating peak stage.The reservoirs are reefal-shoal facies primarily interlayered with source rocks in a large area, with an average porosity of 6%, permeability below 10×10-3 μm2, and saturation between 45%—65%.With Monte Carlo Simulation Method, the recoverable resources are evaluated to be 155.1, 400.1 and 875.3 billion cubic meters under the probability of 90%, 50% and 10% respectively.Based on the finite method, the tight gas accumulation area is 6 000 km2, recoverable resource is 434.6 billion cubic meters, and the average abundance of recoverable resource is 0.07×108 m3/km2 belonging to the low-very low abundance tight gas resource.However, in "sweet spots" like northern ASSA, Terekhov, KNDK, it can be between 0.08×108 — 0.25×108 m3/km2.By referring to horizontal well SRV fracturing experiences and "sweet spot" optimization to enhance single well production, economic benefit of exploration and development can be realized in the Lower Carboniferous in Marsel block.
-
Key words:
- tight gas /
- resource potential /
- exploration prospect /
- Lower Carboniferous /
- Marsel block /
- Kazakhastan
-
图 2 Marsel探区下石炭统综合柱状图(据文献[21]修改)
Figure 2. Sequence stratigraphic section of Lower Carboniferous in Marsel block
图 3 Marsel探区石炭系地层展布图(据文献[2]修改)
Figure 3. Distribution of Lower Carboniferous strata in Marsel block
表 1 Marsel探区下石炭统储层类型与发育分布特征
Table 1. Characteristics of reservoir types and distribution of Lower Carboniferous in Marsel block
储层类型 发育区域 分布层位 典型井 岩溶缝洞型 ASSA、Terekhov、
Oppak、PRDSPSS12、PSS18,常发育于区域性膏
岩层下部或与膏岩伴生ASSA-2、ASSA-1、Terekhov1-P、TGTR-8、
Oppak1-G、PRDS-18礁滩复合体型 Tam、PRDS PSS12、PSS14、PSS15、PSS17 Tam-5、SK-1012、PRDS-18 白云岩化滩型 KNDK PSS18底部 KNDK-6 裂缝型 PRDS PSS14、PSS15 PRDS-18、PRDS-15 表 2 Marsel探区下石炭统可采资源量(储量)估算结果对比
Table 2. Comparison of evaluation results of recoverable reserves of Lower Carboniferous in Marsel block
评价方法 可采资源量(储量)估算结果/亿m3 低估值 最佳估值 高估值 蒙特卡洛模拟 1 551 4 001 8 753 小面元容积法 3 242 4 323 5 405 GCA公司估算资源量[1] 600(1C) 1 442(2C) 5 159(3C) 井控面积资源量[1] 470(1C) 1 291(2C) 3 201(3C) PRMS资源量[1] 10 366 14 762 21 242 注:C.条件储量级别,系指已经被探井发现的、在当前条件下因输油气管线等某类客观原因尚不能够即时开发利用的储量,依据地质上的把握程度细分为1C、2C、3C;1C.探明可采储量;2C.控制可采储量;3C.预测可采储量 -
[1] Effimoff I.Future hydrocarbon potential of Kazakhstan[J].AAPG Memoir, 2001, 74(12):243-258. [2] 庞雄奇, 黄捍东, 林畅松, 等.哈萨克斯坦Marsel探区叠复连续气田形成、分布与探测及资源储量评价[J].石油学报, 2014, 35(6):1012-1056. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201406003.htm [3] IHS Energy Group.International petroleum exploration and production database includes data current as of August[M]//Database available from HIS Energy Group.: HIS Energy Group, 2012. [4] Schmoker J W.Resource-assessment perspectives for unconventional gas systems[J].AAPG Bulletin, 2002, 86(11):1993-1999. http://www.researchgate.net/publication/299063416_Resource-assessment_perspectives_for_unconventional_gas_systems [5] Crovelli R A, Charpentier R R.Analytic resource assessment method for continuous (unconventional) oil and gas accumulations:The "ACCESS" method[M].Denver, Colorado:Denver Federal Center, 2000. [6] Haskett W J, Brown P J.Evaluation of unconventional resource plays[C]//Society of Petroleum Engineers.SPE annual technical conference and exhibition.Texas, USA: Society of Petroluem Engineers, 2005. [7] Olea R A, Cook T A, Coleman J L.A methodology for the assessment of unconventional of continuous resources with an application to the greater natural Buttes gas field, Utah[J].Natural Resources Research, 2010, 19(4):10-18. doi: 10.1007/s11053-010-9127-8 [8] 周庆凡, 张亚雄.油气资源量含义和评价思路的探讨[J].石油与天然气地质, 2011, 32(3):474-480. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201103024.htm [9] 王社教, 蔚远江, 郭秋麟, 等.致密油资源评价新进展[J].石油学报, 2014, 35(6):1095-1105. http://www.cqvip.com/QK/95667X/201406/663545898.html [10] 郭秋麟, 陈宁生, 刘成林, 等.油气资源评价方法研究进展与新一代评价软件系统[J].石油学报, 2015, 36(10):1305-1314. http://www.cqvip.com/QK/95667X/201510/83898866504849534948484952.html [11] Bykadorov V A, Bush V A, Fedorenko O A, et al.Ordovician-permian palaeogeography of central eurasia:Development of palaeozoic petroleum-bearing basins[J].Journal of Petroleum Geology, 2003, 26(3):325-350. doi: 10.1111/j.1747-5457.2003.tb00033.x [12] Box S E, Syusyura B, Seltmann R, et al.Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, central Kazakhstan[M].Kazakhstan:Society of Economic Geologists Economic Geology, 2012, 16:303-328. [13] Minskiy N A, Sokolova Y A.Secondary mineralization and oil potential of Lower Carboniferous rocks in Chu-Sarysu Basin in relation to tectonic activity[J].International Geology Review, 1974, 16(7):741-748. doi: 10.1080/00206817409471798 [14] 郑俊章, 周海燕, 黄先雄.哈萨克斯坦地区石油地质基本特征及勘探潜力分析[J].中国石油勘探, 2009, 14(2):80-86. http://d.wanfangdata.com.cn/Periodical/zgsykt200902015 [15] 王屿涛, 杨新峰, 王晓钦, 等.哈萨克斯坦东南部含油气盆地石油地质条件及投资环境分析[J].中国石油勘探, 2010, 15(1):67-73. http://d.wanfangdata.com.cn/Conference_7203874.aspx [16] 刘景东, 蒋有录.构造反转对哈萨克斯坦A凹陷油气藏形成的影响力[J].地质科技情报, 2013, 32(3):75-80. [17] Abrajevitch A, van der Voo R, Bazhenov M L, et al.The role of the Kazakhstan orocline in the Late Paleozoic amalgamation of Eurasia[J].Tectonophysics, 2008, 455(1):61-76. http://www.sciencedirect.com/science/article/pii/S0040195108002175 [18] Gürgey K.An attempt to recognise oil populations and potential source rock types in Paleozoic sub-and Mesozoic-Cenozoic supra-salt strata in the southern margin of the Pre-Caspian Basin, Kazakhstan Republic[J].Organic Geochemistry, 2002, 33(7):723-741. doi: 10.1016/S0146-6380(02)00039-6 [19] Zhang Manli, Lin Changsong, Sun Yanda, et al.Sequence framework, depositional evolution and controlling processes, the Early Carboniferous carbonate system, Chu-Sarysu Basin, southern Kazakhstan[J].Marine and Petroleum Geology, 2020, 111:544-556. doi: 10.1016/j.marpetgeo.2019.08.046 [20] 石巨业, 金之钧, 樊太亮, 等.南图尔盖盆地Anyskum坳陷北部层序发育特征及充填演化模式[J].地质科技情报, 2016, 25(6):70-76, 89. http://www.cqvip.com/QK/93477A/201606/670696248.html [21] 徐桂芬, 林畅松, 李振涛.南哈萨克区块下石炭统层序岩相古地理及其对有利储集层的控制[J].东北石油大学学报, 2014, 38(6):1-11. http://www.cnki.com.cn/Article/CJFDTotal-DQSY201406002.htm [22] 王媛, 林畅松, 李浩, 等.哈萨克斯坦Marsel探区下石炭统高频层序地层特征与沉积演化[J].古地理学报, 2017, 19(5):820-834. http://www.cqvip.com/QK/84020X/201705/673383320.html [23] 刘洛夫, 朱毅秀, 胡爱梅, 等.滨里海盆地盐下层系的油气地质特征[J].西南石油学院学报, 2002, 24(3):11-15. http://qikan.cqvip.com/Qikan/Article/Detail?id=6433288 [24] 金之钧, 王骏, 张生根, 等.滨里海盆地盐卜油气成藏主控因素及勘探方向[J].石油实验地质, 2007, 29(2):111-115. http://www.cnki.com.cn/Article/CJFDTotal-SYSD200702001.htm [25] Gürgey K.An attempt to recognise oil populations and potential source rock types in Paleozoic sub-and Mesozoic-Cenozoic supra-salt strata in the southern margin of the Pre-Caspian Basin, Kazakhstan Republic[J].Organic Geochemistry, 2002, 33(7):723-741. doi: 10.1016/S0146-6380(02)00039-6 [26] Li Qianwen, Pang Xiongqi, Li Boyuan, et al.Discrimination of effective source rocks and evaluation of the hydrocarbon resource potential in Marsel, Kazakhstan[J].Journal of Petroleum Science and Engineering, 2018, 160:194-206. doi: 10.1016/j.petrol.2017.10.029 [27] Zhao Zhengfu, Pang Xiongqi, Li Qianwen, et al.Depositional environment and geochemical characteristics of the Lower Carboniferous source rocks in the Marsel area, Chu-Sarysu Basin, Southern Kazakhstan[J].Marine and Petroleum Geology, 2017, 81:134-148. doi: 10.1016/j.marpetgeo.2016.12.021 [28] Webb G E.Latest Devonian and Early Carboniferous reefs:Depressed reef building after the Middle Paleozoic collapse[J].SEPM Special Publication, 2002, 72:239-269. [29] 王媛, 林畅松, 李浩, 等.哈萨克斯坦Marsel探区下石炭统碳酸盐岩微相特征与沉积环境[J].现代地质, 2018, 32(3):511-526. http://www.cqvip.com/QK/96868X/20183/675855242.html [30] 何聪鸽, 范子菲, 许安著.稠油油藏水平井过热蒸汽吞叶储层适应性评价[J].地质科技情报, 2018, 37(1):247-251. [31] 王媛, 林畅松, 李浩, 等.高频层序地层格架中碳酸盐岩成岩作用研究:以哈萨克斯坦Marsel探区下石炭统谢尔普霍夫阶为例[J].天然气地球科学, 2018, 29(1):28-41. http://d.wanfangdata.com.cn/periodical/trqdqkx201801003 [32] Sibley D F, Gregg J M.Classification of dolomite rock texture[J].Journal of Sedimentary Research, 1987, 57(6):967-975. [33] Zhang Kun, Pang Xiongqi, Zhao Zhengfu, et al.Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-Sarysu Basin[J].Marine and Petroleum Geology, 2018, 93:451-467. doi: 10.1016/j.marpetgeo.2018.03.027 [34] Cook H E, Zhemchuzhnikov V G, Zempolich W G.Devonian and Carboniferous carbonate platform facies in the Bolshoi Karatau, Southern Kazakhstan:Outcrop analogs for coeval carbonate oil and gas fields in the North Caspian Basin, Western Kazakhstan[J].Transplantation, 2002, 56(3):512-517. [35] 陈晓智, 庞雄奇, 邵新荷, 等.鄂尔多斯盆地临兴A地区下石盒子组致密砂岩气成藏条件[J].地质科技情报, 2018, 37(1):169-176. [36] 王鹏飞, 高振南, 李俊飞, 等.基于数理统计方法的地质模型不确定性评价[J].地质科技情报, 2019, 38(2):291-296. [37] 赵鹏飞, 王庆如, 王龙, 等.SPE规则在储量和潜在资源量评估中的应用探讨[J].地质科技情报, 2018, 37(1):231-239. [38] 王鹏飞, 高振南, 李俊飞, 等.基于数理统计方法的地质模型不确定性评价[J].地质科技情报, 2019, 38(2):291-296.