Reservoir characteristics and economic sweet classification scheme of Fuyu reservoir in Daqing Oilfield
-
摘要: 大庆油田扶余油层储量丰富,但是由于储层特征不清以及缺乏科学的"甜点"分类方案,导致研究区"甜点"优选难度大。为了明确研究区储层特征以及"甜点"筛选方案,应用岩心物性测试、全岩分析、铸体薄片、扫描电镜、岩石力学实验、高压压汞实验、测井资料建立了研究区物性和脆性指数计算模型,最终为明确储层特征和"甜点"筛选提供依据。结果表明:①研究区属于特低孔-超低渗致密储层,脆性指数集中在0.5~0.75之间,孔隙结构分为4类,Ⅰ类样品的孔隙度平均大于11%,渗透率平均大于0.7×10-3 μm2,以大孔为主,平均进汞饱和度大于75%,连通性最好;Ⅱ类样品的孔隙度主要为9%~12%,渗透率主要为0.3×10-3~0.7×10-3 μm2,大孔喉减少,小孔喉增加,平均进汞饱和度大于70%;Ⅲ类样品的孔隙度主要为8%~11%,渗透率主要为0.1×10-3~0.3×10-3 μm2,平均进汞饱和度大于60%,连通性变差;Ⅳ类样品的孔隙度主要小于9%,渗透率主要小于0.1×10-3 μm2,平均进汞饱和度小于60%,以小孔喉为主,储集、渗流能力最差。②结合物性、含油性、脆性指数利用灰色关联法建立了研究区经济"甜点"分类标准,Ⅰ类经济"甜点"的综合得分大于0.55,Ⅱ类经济"甜点"得分为0.4~0.55,Ⅲ类经济"甜点"得分为0.25~0.4,无效储层或干层综合得分 < 0.25,并且根据划分标准对井进行验证,发现该标准有效解决了根据测井判断储层是否含油所带来的误差。③沉积、成岩、断层相互耦合共同控制"甜点"的发育。沉积作用控制储层物性和孔隙结构,成岩作用增加了储层非均质性,断层的存在极大影响了储层含油性。该研究成果建立的"甜点"分类模型为研究区"甜点"筛选提供了科学依据。Abstract: The resources of the Fuyu reservoir in the Daqing Oilfield are abundant. Due to the unclear characteristics of reservoir and lack of scientific sweet classification scheme, it is difficult to optimize the sweet in the study area. In order to clarify reservoir characteristics and sweet selection scheme in the study area, this paper uses core physical property, XRD, casting thin section, scanning electron microscope, rock mechanics tests, high pressure mercury intrusion tests and logging data to establish the physical properties and the brittleness model of the study area., which ultimately provides a basis for clarifying reservoir characteristics and sweet screening. The results reveal ① the study area belongs to low hole-ultra low permeability reservoir, brittleness index between 0.5-0.75 and the pore structure of the reservoir in the study area can be divided into four types. Type Ⅰ reservoirs have more large-pore throats and fewer small-pore throats, with a mean porosity is more than 11% and a permeability is more than 0.7×10-3 μm2, the mercury saturation is more than 75% and the connectivity is good. Porosity of type Ⅱ reservoirs mainly locates 9%-12% and a permeability is 0.3×10-3-0.7×10-3 μm2, the mercury saturation is more than 70% and the connectivity is good. Type Ⅲ reservoirs have fewer large-pore throats, but more small-pore throats. The porosity mainly locates 8%-11% and a permeability is 0.1×10-3-0.3×10-3 μm2. The mercury saturation is more than 60% and the connectivity is poorer than type Ⅰ and Ⅱ. Type Ⅳ reservoirs have few small-pore throats, with a mean porosity is less than 9% and a permeability is less than 0.1×10-3 μm2, and the mercury saturation is less than 60% which have poor connectivity and permeability. ② Combine physical properties, oily and brittleness of reservoir and use gray relation method to establish the economic sweet classification standard in the study area. The comprehensive score of type Ⅰ economic sweet is more than 0.55, and the comprehensive score of type Ⅱ economic sweet is in 0.4-0.55, and the class Ⅲ economic sweet in 0.25-0.4. The non-reservoir or dry layer comprehensive score is less than 0.25. The well was verified by the classification standard and found that the standardeffectively solves the error according to the log to judge whether the reservoir contains oil. ③ Sedimentation, diagenesis, and faults interaction control the development of economic sweet. Sedimentation controls reservoir physical properties and pore structure, and diagenesis increases reservoir heterogeneity, and the existence of faults greatly affects reservoir oil. The results establish a sweet classification model to provide a scientific basis for the selection of sweet in the study area.
-
Key words:
- Fuyu oil layer /
- economic sweet /
- pore structure /
- sedimentation
-
表 1 研究区储层物性“甜点”分类方案
Table 1. Classification scheme of reservoir physical property "sweet" in the study area
物性参数 Ⅰ类储层 Ⅱ类储层 Ⅲ类储层 Ⅳ类储层 平均喉道半径/μm ≥0.6 [0.3, 0.6) [0.1, 0.3) <0.1 渗透率/10-3μm2 ≥0.7 [0.3, 0.7) [0.1, 0.3) <0.1 孔隙度/% ≥11 [9, 12) [8, 9) <9 进汞饱和度/% ≥75 ≥70 ≥60 ≥30 喉道半径类型 细喉道 微细喉道 微喉道 吸附喉道 表 2 研究区储层经济“甜点”分类标准
Table 2. Classification standard for reservoir economic "sweet"
储层经济“甜点”类别 储层分类综合得分 单砂体厚度/m Ⅰ类经济“甜点” ≥0.55 >5 Ⅱ类经济“甜点” [0.4, 0.55) (3, 5] Ⅲ类经济“甜点” [0.25, 0.4) <3 无效储层 <0.25 <3 -
[1] Schmoker J W.Resource-assessment perspectives for unconventional gas systems[J]. American Association of Petroleum Geologists Bulletin. 2002, 86(11):1993-2000. http://www.researchgate.net/publication/299063416_Resource-assessment_perspectives_for_unconventional_gas_systems [2] Bruce J.Bakken black gold[N].Leader-Poster, 2007-12-10(6) [3] 周林, 刘皓天, 周坤, 等.致密砂岩储层"甜点"识别及评价方法[J].地质科技通报, 2020, 39(4):165-173. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml [4] 贾承造.论非常规油气对经典石油天然气地质学理论的突破及意义[J].石油勘探与开发, 2017, 44(1):1-11. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201701002.htm [5] 贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129-136. http://qikan.cqvip.com/Qikan/Article/Detail?id=41242085 [6] 杨智, 付金华, 郭秋麟, 等.鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力[J].中国石油勘探, 2017, 22(6):9-15. http://www.cnki.com.cn/Article/CJFDTotal-KTSY201706002.htm [7] 匡立春, 唐勇, 雷德文, 等.准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J].石油勘探与开发, 2012, 39(6):657-667. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201206004.htm [8] 杜金虎, 刘合, 马德胜, 等.试论中国陆相致密油有效开发技术[J].石油勘探与开发, 2014, 41(2):198-205. http://www.cqvip.com/QK/90664X/20142/48991892.html [9] 邹才能, 杨智, 朱如凯, 等.中国非常规油气勘探开发与理论技术进展[J].地质学报, 2015, 89(6):979-1007. http://qikan.cqvip.com/Qikan/Article/Detail?id=666463339 [10] 张君峰, 毕海滨, 许浩, 等.国外致密油勘探开发新进展及借鉴意义[J].石油学报, 2015, 36(2):127-137. http://www.cqvip.com/QK/95667X/201502/664306615.html [11] 王社教, 蔚远江, 郭秋麟, 等.致密油资源评价新进展[J].石油学报, 2014, 35(6):1095-1105. http://www.cqvip.com/QK/95667X/201406/663545898.html [12] 杜金虎, 何海清, 杨涛, 等.中国致密油勘探进展及面临的挑战[J].中国石油勘探, 2014, 19(1):1-9. http://www.cqvip.com/QK/90278A/20141/48871044.html [13] 许多年, 尹路, 瞿建华, 等.低渗透砂砾岩"甜点"储层预测方法及应用:以准噶尔盆地玛湖凹陷北斜坡区三叠系百口泉组为例[J].天然气地球科学, 2015, 26(增刊1):154-161. http://www.cqvip.com/QK/97226X/2015S1/84687588504849538349484957.html [14] 尤丽, 张迎朝, 李才, 等.基于沉积成岩-储集相分析确定文昌9区低渗储层"甜点"分布[J].吉林大学学报:地球科学版, 2014, 44(5):1432-1440. http://www.cqvip.com/QK/91256B/20145/662664750.html [15] 蒋裕强, 陈林, 蒋婵, 等.致密储层孔隙结构表征技术及发展趋势[J].地质科技情报, 2014, 33(3):63-70. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201403010.htm [16] 黄文彪, 邓守伟, 卢双舫, 等.松辽盆地南部扶余油层致密储层成岩序列及成藏期次[J].石油与天然气地质, 2017, 38(3):508-516. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201703010.htm [17] 孟子圆, 孙卫, 刘登科, 等.联合压汞法的致密储层微观孔隙结构及孔径分布特征:以鄂尔多斯盆地吴起地区长6储层为例[J].地质科技情报, 2019, 38(2):208-216. [18] 孙雨, 陈晨, 马世忠, 等.松辽盆地扶新隆起带南部扶余油层油气运移机制与成藏模式研究[J].地质论评, 2013, 59(3):501-509. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201303011.htm [19] 付广, 王有功.三肇凹陷青山口组源岩生成油向下"倒灌"运移层位及其研究意义[J].沉积学报, 2008, 26(2):355-360. http://d.wanfangdata.com.cn/periodical/cjxb200802022 [20] 陈桂华, 白玉湖, 陈晓智, 等.页岩油气纵向综合甜点识别新方法及定量化评价[J].石油学报, 2016, 37(11):1337-1342, 1360. http://d.wanfangdata.com.cn/Periodical/syxb201611002 [21] 廖东良, 路保平.页岩气工程甜点评价方法:以四川盆地焦石坝页岩气田为例[J].天然气工业, 2018, 38(2):43-50. http://www.cqvip.com/QK/90587X/20182/674644612.html [22] Veen J H, Verreussel R, Ventra D, et al.Sweet spot identification and smart development: An integrated reservoir characterization study of a posidonia shale of a posidonia shale outcrop analogue[C]//76th EAGE Conference and Exhibition 2014.: European Association of Geoscientists & Engineers, 2014, 2014(1): 1-5. [23] 李登华, 李建忠, 张斌, 等.四川盆地侏罗系致密油形成条件、资源潜力与甜点区预测[J].石油学报, 2017, 38(7):740-752. http://d.wanfangdata.com.cn/Periodical/syxb201707003 [24] 张新顺, 王红军, 马锋, 等.致密油资源富集区与"甜点区"分布关系研究:以美国威利斯顿盆地为例[J].石油实验地质, 2015, 37(5):619-626. [25] 蒙启安, 白雪峰, 梁江平, 等.松辽盆地北部扶余油层致密油特征及勘探对策[J].大庆石油地质与开发, 2014, 33(5):23-29. [26] 王雅春, 王胜男.源岩、超压和断裂空间匹配对三肇凹陷扶杨油层油成藏的控制作用[J].吉林大学学报:地球科学版, 2009, 39(4):656-661. [27] 林铁锋, 康德江.松辽盆地三肇凹陷扶余油层致密储层分类精细评价[J].石油实验地质, 2017, 39(5):686-693. [28] 王升, 柳波, 付晓飞, 等.致密碎屑岩储层岩石破裂特征及脆性评价方法[J].石油与天然气地质, 2018, 39(6):1270-1279. [29] 于庭, 巴晶, 钱卫, 等.非常规油气储层脆性评价方法研究进展[J].地球物理学进展, 2019, 34(1):236-243. [30] 任淑悦, 孙卫, 刘登科, 等.苏里格西区苏48区块盒8段储层微观孔隙结构及对渗流能力的影响[J].地质科技情报, 2018, 37(2):123-128. [31] 张帆, 孙卫, 屈涛, 等.鄂尔多斯盆地板桥-合水与姬塬地区长6储层主控因素分析[J].地质科技情报, 2018, 37(2):35-40. [32] 张帆, 孙卫, 王斌, 等.鄂尔多斯盆地华庆地区长6_3储层成岩作用及其对储层物性的影响[J].石油地质与工程, 2017, 31(1):1-6, 131. [33] Worden R H, Griffiths J, Wooldridge L J, et al.Chlorite in sandstones[J].Earth-Science Reviews, https://doi.org/10.1016/j.earscriev.2020.103105. doi: 10.1016/j.earscriev.2020.103105