留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湘东北冷家溪群沉积岩地球化学特征及其构造意义

柏道远 蒋启生 李彬 姜文 李银敏

柏道远, 蒋启生, 李彬, 姜文, 李银敏. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报, 2021, 40(1): 1-13, 26. doi: 10.19509/j.cnki.dzkq.2021.0017
引用本文: 柏道远, 蒋启生, 李彬, 姜文, 李银敏. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报, 2021, 40(1): 1-13, 26. doi: 10.19509/j.cnki.dzkq.2021.0017
Bai Daoyuan, Jiang Qisheng, Li Bin, Jiang Wen, Li Yinmin. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13, 26. doi: 10.19509/j.cnki.dzkq.2021.0017
Citation: Bai Daoyuan, Jiang Qisheng, Li Bin, Jiang Wen, Li Yinmin. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13, 26. doi: 10.19509/j.cnki.dzkq.2021.0017

湘东北冷家溪群沉积岩地球化学特征及其构造意义

doi: 10.19509/j.cnki.dzkq.2021.0017
基金项目: 

中国地质调查局项目 DD20160031-04

湖南省地质矿产勘探开发局科研项目 2019-17

详细信息
    作者简介:

    柏道远(1967-), 男, 教授级高级工程师, 主要从事区域地质调查与基础地质研究工作。E-mail:daoyuanbai@sina.com

  • 中图分类号: P542;P549

Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan

  • 摘要: 冷家溪群是江南造山带湖南段的最早物质纪录,其沉积构造背景及相关的钦杭结合带位置尚存争议。在野外地质调查基础上,对湘东北金井地区冷家溪群早期-中期相对新鲜砂岩采样进行系统的主量元素和微量元素含量分析,进而按时代先后对砂岩分组并进行地球化学研究,以此探讨沉积期盆地性质及大地构造格局。金井地区冷家溪群砂岩的主量元素组成变化较大,SiO2质量分数总体较低、Al2O3质量分数和Al2O3/SiO2比值较高、K2O/Na2O比值高且变化大。轻稀土富集、重稀土平坦、铕负异常明显等特征暨球粒陨石标准化曲线形态与典型的后太古宙页岩和上陆壳相似。主量元素地球化学特征反映沉积环境为弧后盆地,且早期易家桥组和潘家冲组的成熟度较高,主要来源于北邻构造相对稳定的扬子陆块南缘;中期雷神庙组-黄浒洞组的成熟度较低,可能更多来源于南邻构造相对活动的大陆岛弧。各组地层构造环境微量元素判别图解均显示为大陆岛弧环境,但从微量元素特征对母岩的继承性分析,仍反映出弧后盆地环境;有关微量元素参数的相对大小指示早期沉积环境为活动陆缘、中期沉积环境为大陆岛弧,与主量元素特征反映的信息一致。根据上述地球化学证据,提出冷家溪期构造格局与演化过程:早期受古华南洋板块向北西高角度俯冲影响,弧后软流圈上涌导致岩石圈伸展而形成宽阔的弧后盆地,金井地区处于盆地北部而主要接受北邻扬子陆块来源沉积;中期古华南洋板块俯冲角度变缓并推动大陆岛弧向北西运移,弧后盆地收缩,金井地区因构造迁移而主要接受南邻大陆岛弧来源沉积。结合区域资料,认为弧后盆地南邻大陆岛弧大体在安仁-双牌一线。

     

  • 冷家溪群是江南造山带湖南段的最早物质纪录,曾长期被视为中元古代产物[1]。近年来,大量高精度年龄资料表明冷家溪群及相当地层(双桥山群、四堡群、梵净山群)的时代实际为新元古代(主要为860~820 Ma)[2-14],对此地学工作者已取得共识。但关于冷家溪群沉积盆地性质尚存在争议,多数研究者[9, 15-21]认为是扬子东南缘活动大陆边缘的弧后盆地,部分[22-24]认为是裂谷盆地,个别[25-26]研究提出是周缘前陆盆地或被动大陆边缘盆地。此外,扬子与华夏板块之间的钦杭结合带是一个与冷家溪群沉积盆地密切相关的构造单元,但由于后期沉积掩盖导致物质记录的缺乏,关于结合带在湖南的走向存在茶陵-郴州断裂[27-30]、安仁(川口)-双牌断裂和郴州-临武断裂之间[31]、湘乡-醴陵地区和湘东南的桂阳地区之间[32]、南桥-新化-隆回-苗儿山与川口-常宁-双牌两线之间[33]、长沙-浏阳-桃江-城步一线[34]、溆浦-靖州断裂[35-36]等多种观点,目前尚未取得一致认识。基于湘东北金井地区冷家溪群砂岩的地球化学特征并结合区域地质资料,笔者拟对沉积期盆地性质及大地构造格局与演化进行研究,为华南新元古代大地构造研究提供新的基础资料。

    江南造山带为扬子陆块东南缘前南华纪基底出露带[37-38],带内冷家溪群及相当地层的形成时代和构造背景长期以来备受研究者关注[1-26, 39]。湖南地处江南造山带中西段(图 1),境内新元古界冷家溪群下未见底,与上覆板溪群呈角度不整合接触,主要出露于安仁以北的湘东-湘东北隆起区和雪峰构造带北段益阳-沅陵一带,湘西芷江一带局部出露。同时,湘西南城步地区被新元古代花岗岩侵位的地层可能也与冷家溪群相当[9]。冷家溪群为一套具浅变质的火山-碎屑沉积建造,自下而上划分为下部(早期)易家桥组、潘家冲组,中部(中期)雷神庙组、黄浒洞组和上部(晚期)小木坪组和大药姑组等6个地层单位,其中大药姑组仅在东北部临湘地区有少量发育[1]

    图  1  冷家溪群及相当时代地层在湖南及邻区的分布(据文献[40]略修改)
    Figure  1.  Distribution of Lengjiaxi Group and its corresponding stratum

    金井地区位于湘东-湘东北隆起带的中部,主要出露新元古界冷家溪群,其次为白垩系-古近系以及侏罗纪花岗岩,北部分布有少量新元古代花岗岩(图 2)。该区冷家溪群发育较齐全,只缺失上部大药姑组。其中易家桥组为千枚岩、粉砂质板岩、凝灰质板岩夹砂岩、沉凝灰岩组合,发育水平层理、砂质透镜体,并见鲍马序列AE、ADE组合,厚度大于1 609 m;潘家冲组为杂砂岩夹粉砂质板岩、板岩组合,厚度变化较大,最薄处717 m,出露厚度最大处为1 024 m,发育水平层理和楔状交错层理,见鲍马序列AB、ABD、ABCE组合;雷神庙组主要为一套细碎屑岩沉积组合,表现为板岩、千枚状板岩夹粉砂质板岩、砂质板岩,局部夹少量杂砂岩,发育水平层理和砂质透镜体,常见鲍马序列AE、ADE组合,厚度为699 m;黄浒洞组为细砂岩夹粉砂岩、板岩或砂岩与板岩互层,发育水平层理、粒序层理及鲍马序列ABD、ABE、AE等组合,厚约781 m;小木坪组为板岩、粉砂质板岩夹少量粉砂岩或泥质粉砂岩,水平层理和条带状构造发育,厚约1 200 m。

    图  2  金井地区地质及采样位置图(a)、冷家溪群柱状图(b)
    1.地质界线;2.角度不整合界线;3.断裂;4.样品位置及编号;K-E.白垩系-古近系;Qb1x.小木坪组;Qb1h.黄浒洞组;Qb1l.雷神庙组;Qb1p.潘家冲组;Qb1y.易家桥组;γJ.侏罗纪花岗岩;γQb.青白口纪花岗岩
    Figure  2.  Geological map of Jinjing area showing the sampling location (a) and the column of Lengjiaxi Group (b)

    在系统的野外地质调查研究基础上,对金井地区冷家溪群中相对新鲜的砂岩系统采集样品,进行主量元素、微量元素(含稀土元素)含量分析,并结合区域地质资料,综合分析其沉积物源区特征和形成构造环境,为江南造山带构造演化提供依据。其中易家桥组、潘家冲组、雷神庙组和黄浒洞组的样品数量分别为4,7,2,3件,分析结果和部分参数列于表 1。为便于探讨不同时代砂岩的地球化学特征差异、形成构造背景与演化信息,本文将样品分为易家桥组、潘家冲组、雷神庙组-黄浒洞组等3组计算地球化学成分平均值,与前人临湘地区和沅陵地区冷家溪群分析数据、不同构造环境杂砂岩数据、PAAS和上陆壳数据等进行对比(表 2)。

    表  1  湘东北金井地区冷家溪群沉积岩地球化学组成
    Table  1.  Major and trace element compositions of the sedimentary rocks of Lengjiaxi Group in Jinjing area, northeast Hunan
    样品号 WY23-31 WY23-37 WY24-6 WY24-8 WY23-40 WY23-41 WY26-3 WY26-2 WY26-5 WY26-7 WY27-0 WY27-5 WY27-9 WY713 WY714 WY27-15
    层位岩性 易家桥组 潘家冲组 雷神庙组 黄浒洞组
    细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 粉-细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩
    SiO2 wB/% 63.87 71.99 67.54 62.5 68.06 71.15 64.41 63.30 62.39 66.49 65.44 62.19 60.85 60.78 61.95 63.80
    Al2O3 17.76 12.77 15.84 16.77 14.65 14.18 17.15 16.02 17.28 14.46 12.64 16.94 17.84 17.83 15.84 17.08
    Fe2O3 2.21 2.03 4.99 1.12 1.54 1.33 3.43 1.52 1.59 4.45 1.28 1.10 1.96 1.52 0.87 2.98
    FeO 4.65 3.89 1.32 5.38 5.11 4.23 2.69 5.65 5.56 3.62 5.53 5.96 5.58 5.90 5.63 4.27
    CaO 0.16 0.16 0.07 1.02 0.14 0.05 0.18 0.49 0.22 0.13 2.11 0.44 0.15 0.66 0.24 0.35
    MgO 1.81 1.27 1.43 2.44 1.98 1.29 2.18 2.67 3.10 2.23 2.81 2.82 2.95 2.68 2.42 2.51
    K2O 3.89 2.32 2.72 3.82 2.77 2.66 3.77 3.32 3.32 2.22 1.74 3.41 3.78 3.88 3.21 3.9
    Na2O 0.88 1.49 0.25 1.08 1.16 1.07 0.91 1.32 1.60 1.37 2.10 1.87 1.27 1.16 1.51 0.28
    TiO2 0.34 0.61 0.47 0.54 0.35 0.34 0.45 0.45 0.44 0.25 0.30 0.41 0.44 0.47 0.34 0.41
    P2O5 0.14 0.13 0.073 0.13 0.10 0.096 0.10 0.11 0.14 0.085 0.091 0.12 0.10 0.11 0.11 0.22
    MnO 0.028 0.062 0.053 0.240 0.044 0.030 0.027 0.120 0.083 0.140 0.250 0.097 0.100 0.16 0.096 0.08
    烧失量 3.70 2.57 4.57 4.64 3.46 2.95 4.04 4.33 4.08 3.88 5.47 3.91 4.30 4.50 7.42 3.84
    H2O+ 1.80 1.44 2.95 1.74 1.62 1.38 2.51 1.93 1.92 2.92 1.60 1.64 1.44 1.72 0.93 1.83
    FeOT+MgO 8.35 6.94 7.08 8.70 8.39 6.67 7.81 9.57 9.92 9.64 9.36 9.68 10.22 9.81 8.78 9.32
    Al2O3/SiO2 0.28 0.18 0.23 0.27 0.22 0.20 0.27 0.25 0.28 0.22 0.19 0.27 0.29 0.29 0.26 0.27
    K2O/Na2O 4.42 1.56 10.88 3.54 2.39 2.49 4.14 2.52 2.08 1.62 0.83 1.82 2.98 3.34 2.13 13.93
    La wB/10-6 44.7 43.2 63.7 41.2 37.9 42.4 38.3 37.8 40.7 30.9 23.6 37.9 39.2 36.4 27.8 47.8
    Ce 82.3 78.8 82.8 76.8 69.3 77.2 66.3 70.6 73.8 54.3 43.8 71.2 68.2 68.6 50.1 90.1
    Pr 10.10 9.80 14.40 9.42 8.64 9.67 8.45 8.71 9.21 7.29 5.44 8.71 8.94 8.27 5.97 11.2
    Nd 38.2 37.5 54.6 36.1 33.0 37.2 32.4 33.0 35.6 28.2 21.0 33.6 33.8 32.2 22.7 44.2
    Sm 7.25 7.01 9.81 6.94 6.16 7.07 6.07 6.24 6.92 5.58 4.27 6.43 6.52 6.20 4.50 8.63
    Eu 1.25 1.28 1.65 1.26 1.11 1.30 1.13 1.13 1.23 1.00 0.74 1.23 1.18 1.13 0.85 1.48
    Gd 5.52 5.58 7.65 5.61 4.81 5.4 4.92 5.18 5.46 4.38 3.50 5.22 5.1 4.94 3.69 6.61
    Tb 0.66 0.65 0.98 0.78 0.56 0.63 0.63 0.63 0.68 0.57 0.50 0.68 0.58 0.67 0.47 0.82
    Dy 2.66 2.98 4.63 4.12 2.26 2.78 3.03 2.95 3.42 2.84 2.65 3.27 2.74 3.46 2.54 3.78
    Ho 0.45 0.52 0.94 0.88 0.40 0.45 0.63 0.61 0.70 0.58 0.53 0.72 0.58 0.73 0.57 0.72
    Er 1.60 1.60 2.86 2.74 1.34 1.73 2.10 2.01 2.22 3.04 1.70 2.33 1.98 2.28 1.91 2.34
    Tm 0.31 0.29 0.53 0.52 0.26 0.30 0.39 0.39 0.42 0.36 0.31 0.45 0.41 0.45 0.39 0.46
    Yb 2.27 2.03 3.42 3.56 1.90 2.22 2.76 2.68 2.93 2.42 1.97 3.16 2.77 3.06 2.65 3.16
    Lu 0.43 0.38 0.59 0.62 0.36 0.41 0.52 0.48 0.54 0.42 0.37 0.56 0.51 0.55 0.46 0.56
    ΣREE 198.00 192.00 249.00 191.00 168.00 189.00 168.00 172.00 184.00 142.00 110.00 175.00 173.00 169.00 125.00 222.00
    (La/Yb)N 13.00 14.05 12.30 7.64 13.17 12.61 9.16 9.31 9.17 8.43 7.91 7.92 9.34 7.85 6.93 9.99
    (La/Sm)N 3.76 3.76 3.96 3.62 3.75 3.66 3.85 3.69 3.58 3.38 3.37 3.59 3.66 3.58 3.77 3.38
    (Gd/Yb)N 1.95 2.21 1.80 1.27 2.03 1.95 1.43 1.55 1.50 1.45 1.43 1.33 1.48 1.30 1.12 1.68
    LREE/HREE 13.22 12.66 10.51 9.12 13.13 12.56 10.19 10.55 10.23 8.71 8.57 9.71 10.76 9.47 8.83 11.02
    δEu 0.59 0.61 0.57 0.60 0.61 0.62 0.62 0.60 0.60 0.60 0.57 0.64 0.61 0.61 0.62 0.58
    δCe 0.88 0.87 0.62 0.89 0.88 0.87 0.84 0.89 0.87 0.83 0.88 0.90 0.83 0.90 0.88 0.89
    Cu wB/10-6 36.6 18.8 35.3 38.8 32.2 17.3 18.4 42.7 39.9 35.1 32.8 40.9 33.3 34.3 35.1 30.0
    Pb 38.9 16.3 9.34 14.9 22.0 8.5 8.44 22.2 13.0 16.0 17.8 22.2 18.2 17.5 17.4 22.7
    Zn 125.0 105.0 143.0 128.0 106.0 95.2 94.8 125.0 113.0 111.0 103.0 122.0 122.0 128.0 102.0 110.0
    Cr 109.0 76.4 125 97.3 109.0 66.4 137.0 128.0 176.0 205.0 197.0 146.0 138.0 121.0 128.0 92.3
    Ni 41.0 26.3 59.9 37.5 40.0 26.8 41.0 46.8 49.2 54.3 45.6 45.8 49.8 45.7 36.3 37.7
    Co 12.10 8.74 12.40 15.60 12.30 7.90 12.90 18.40 18.40 18.20 15.60 18.40 19.00 16.90 14.20 15.50
    Cd 0.10 0.10 0.10 0.12 0.11 0.08 0.11 0.11 0.06 0.14 0.13 0.10 0.12 0.10 0.08 0.11
    Li 61.0 36.5 35.0 46.6 56.2 46.5 43.7 57.2 60.6 67.7 66.4 60.4 67.4 71.4 24.0 55.4
    Rb 199 107 131 197 140 119 192 170 174 107 87.9 173 196 184 158 194
    Cs 16.3 10.0 11.2 14.9 11.8 10.8 13.9 13.2 13.8 9.8 6.9 13.7 16.5 12.8 14.4 18.0
    W 1.94 1.73 5.09 2.45 2.40 1.31 1.50 1.79 1.99 1.09 0.71 1.29 1.42 1.6 2.44 2.51
    Mo 0.84 0.51 0.74 0.29 0.16 0.41 0.19 0.23 0.2 0.15 0.22 0.32 0.16 0.25 1.02 0.20
    As 18.50 11.30 1.62 25.80 10.40 12.00 10.20 10.60 3.13 9.31 15.10 8.70 4.62 2.29 51.80 54.10
    Sb 0.67 0.39 1.46 2.10 0.27 0.33 0.57 0.56 0.55 0.46 0.70 0.81 0.75 4.29 34.50 4.45
    Bi 0.84 0.28 0.19 0.34 1.00 0.11 0.35 0.42 0.30 0.31 0.20 0.47 0.35 0.30 0.46 0.61
    Hg 0.014 0.013 0.025 0.046 0.012 0.022 0.019 0.019 0.020 0.020 0.023 0.034 0.013 0.017 0.031 0.020
    Sr 52.4 49.1 12.4 34.4 42.2 43.4 25.5 32.8 29.2 31.2 86.1 35.6 24.2 34.2 38.5 31.2
    Ba 438 352 375 316 350 406 359 321 346 225 214 344 406 390 336 379
    V 121.0 86.6 107.0 116.0 99.3 86.1 130.0 124.0 136.0 118.0 97.2 133.0 140.0 133.0 120.0 119.0
    Sc 20.6 13.0 16.8 19.3 16.6 13.7 23.1 21.8 25.5 21.6 18.3 23.6 26.2 24 21.3 20.1
    Nb 9.24 14.40 8.45 10.30 9.62 8.83 9.47 8.77 8.16 3.84 3.78 9.13 7.22 8.11 6.17 7.56
    Ta 0.70 1.29 0.81 0.91 0.71 0.77 0.73 0.78 0.86 0.64 0.29 1.29 0.60 0.83 0.77 0.58
    Y 13.4 13.8 26.2 21.4 10.3 12.0 16.6 15.4 17.6 15.1 13.9 17.3 14.5 17.6 14.1 18.2
    Zr 194 296 269 204 192 258 176 178 176 189 172 178 165 172 170 198
    Hf 5.50 8.25 7.40 5.85 5.50 7.20 5.00 5.00 5.00 5.40 4.90 5.00 4.60 5.00 5.60 5.60
    Be 3.05 1.92 2.95 2.76 2.51 2.19 2.52 2.54 2.52 1.88 1.51 2.56 2.76 2.71 2.44 2.94
    B 116.6 68.8 83.9 101.8 80.3 78.2 86.4 96.4 41.8 63.7 57.7 80.1 84.5 80.8 124.7 106.6
    Ga 22.6 16.0 18.2 22.2 18.3 17.3 21.4 21.0 21.2 15.6 13.8 22.7 23.0 23.0 20.7 21.6
    Sn 5.23 3.41 4.36 5.03 4.45 4.02 4.475 4.05 5.16 3.60 2.84 4.67 4.70 5.46 4.51 5.20
    U 3.01 2.59 2.84 2.80 2.64 2.74 2.69 2.60 2.46 2.02 1.81 2.62 2.40 2.57 2.54 2.77
    Th 18.4 15.6 15.1 15.1 14.1 14.6 15.0 15.4 14.2 12.3 10.2 19.4 14.2 15.3 16.9 16.9
      注:①所有样品由国土资源部长沙矿产资源监督检测中心完成测试,测试仪器为:ICAP-6300电感耦合等离子体发射光谱仪、X Series 2 ICP-MS电感耦合等离子体质谱仪、PGS-2二米光栅光谱仪、AFS-830a双道原子荧光光谱仪;②FeOT表示全铁;③ΣREE为元素La~Lu含量总和,LREE/HREE = Σ(La~Sm)/ Σ(Gd~Lu) [41],球粒陨石标准化参数据文献[42]
    下载: 导出CSV 
    | 显示表格
    表  2  金井地区冷家溪群砂岩与不同构造环境下杂砂岩的化学组成对比
    Table  2.  Comparison of chemical compositions of the sandstones of Lengjiaxi Group in Jinjing area with the graywackes from various tectonic settings
    金井地区冷家溪群砂岩 临湘地区冷家溪群 沅陵地区冷家溪群 显生宙不同构造环境下杂砂岩
    易家桥组 潘家冲组 雷神庙组-黄浒洞组 大洋岛弧 大陆岛弧 活动大陆边缘 被动大陆边缘 PAAS 上陆壳
    SiO2 wB/% 69.55 69.03 65.37 71.29 73.62 58.83 70.69 73.86 81.95 62.80 66.00
    Al2O3 16.53 15.92 18.05 15.34 12.71 17.11 14.04 12.89 8.41 18.9 15.20
    Fe2O3 2.71 2.27 1.77 2.44 2.03 1.95 1.43 1.30 1.32
    FeO 3.98 4.85 5.78 3.44 4.62 5.52 3.05 1.58 1.76 6.50 4.50
    CaO 0.37 0.50 0.39 0.26 0.64 5.83 2.68 2.48 1.89 1.30 4.20
    MgO 1.82 2.44 2.82 1.61 1.97 3.65 1.97 1.23 1.39 2.20 2.20
    K2O 3.34 2.96 3.84 2.93 1.80 1.60 1.89 2.90 1.71 3.70 3.40
    Na2O 0.96 1.43 1.29 1.78 1.78 4.10 3.12 2.77 1.07 1.20 3.90
    TiO2 0.51 0.39 0.44 0.69 0.60 1.06 0.64 0.46 0.49 1.00 0.50
    P2O5 0.12 0.11 0.14 0.12 0.10 0.26 0.16 0.09 0.12 0.16
    MnO 0.10 0.10 0.11 0.10 0.14 0.15 0.10 0.10 0.05 0.11
    Fe2O3*+MgO 8.24 9.33 10.20 7.25 8.42 11.73 6.79 4.63 2.89 9.35 7.15
    Al2O3/SiO2 0.24 0.23 0.28 0.22 0.17 0.29 0.20 0.18 0.10 0.30 0.23
    K2O/Na2O 5.10 2.29 4.84 1.66 1.07 0.39 0.61 0.99 1.60 3.08 0.87
    n 4 7 5 6 12 7 9 7 7
    La 48.2 35.9 37.8 39.5 35.3 8.2 27.0 37.0 39.0 38.0 30.0
    Ce wB/10-6 80.2 65.0 69.6 73.4 67.4 19.4 59.0 78.0 85.0 80.0 64.0
    Nd 41.6 31.5 33.3 36.2 31.0 11.2 28.3 35.8 42.0 32.0 26.0
    ΣREE 207 162 173 190 170 58.0 146 186 210 183 146
    Eu/Eu* 0.59 0.60 0.61 0.73 0.62 1.04 0.80 0.60 0.55 0.66 0.65
    (La/Yb)N 11.75 9.97 8.41 7.10 7.06 2.80 7.50 8.30 10.8 9.20 9.20
    (Gd/Yb)N 1.81 1.62 1.38 1.38 1.36 1.31 1.49 1.26 2.75 1.36 1.40
    LREE/HREE 11.41 10.60 9.99 7.23 7.14 3.80 7.70 9.10 8.50 9.45 9.47
    K/Rb 175 174 176 213 176 578 219 189 178 192 250
    Rb/Sr 4.28 3.41 5.53 1.72 1.78 0.05 0.65 0.89 1.19 0.8 0.32
    Th 16.1 13.7 16.5 10.3 11.0 2.27 11.1 18.8 16.7 14.6 10.7
    Zr wB/10-6 241 192 177 472 344 96 229 179 298 210 190
    Hf 6.8 5.4 5.2 3.5 2.5 2.1 6.3 6.8 10.1 5.0 5.8
    K/Th 1 726 1 796 1 925 2 360 1 354 4 055 1 296 1 252 681 2 103 2 617
    Zr/Hf 35.7 35.3 34.2 134.8 135.4 45.7 36.3 26.3 29.5 42.00 32.76
    Zr/Th 15.0 14.0 10.7 45.8 31.2 48 21.5 9.5 19.1 14.4 17.8
    La/Th 3.00 2.63 2.29 3.83 3.20 4.26 2.36 1.77 2.2 2.60 2.80
    La/Y 2.58 2.49 2.31 1.26 1.24 0.48 1.02 1.33 1.31 1.41 1.36
    Sc 17 20 23 14.7 14.5 19.5 14.8 8 6 16 11
    Cr 102 145 125 37 51 26 39 110 35
    Ni wB/10-6 41 43 43 28 39 11 13 10 8 55 20
    V 108 113 129 98 95 131 89 48 31 150 60
    Co 12 15 17 11 17 18 12 10 5 23 10
    Zn 125 107 117 102 101 89 74 52 26 85 71
    La/Sc 2.77 1.79 1.64 2.69 2.43 0.55 1.82 4.55 6.25 2.38 2.73
    Th/Sc 0.92 0.68 0.72 0.70 0.76 0.15 0.85 2.59 3.06 0.91 0.97
    Sc/Cr 0.17 0.14 0.18 0.57 0.32 0.3 0.16 0.15 0.31
    Ti/Zr 12.8 12.1 14.8 8.72 10.42 56.8 19.7 15.3 6.74 28.6 15.8
    n 4 7 5 6 12 11 32 10 15
      注:①n为样品数;稀土元素球粒陨石标准化参数据文献[42],Eu/Eu*=EuN/(SmN×GdN)1/2;②临湘地区和沅陵地区数据据文献[25];③不同构造环境杂砂岩的数据据文献[43-44];澳大利亚后太古宙平均页岩(PAAS)和上陆壳成分据文献[42];④带下划线的参数为最具构造环境判别意义的参数[43-44]
    下载: 导出CSV 
    | 显示表格

    金井地区冷家溪群砂岩的主量元素组成变化较大(表 1)。w(SiO2)总体较低,为63.88%~74.43%(氧化物含量为无水化处理后数值,因此不同于表 1;后文同),平均为68.02%。w(Al2O3)较高,为13.20%~18.77%,平均16.74%。Al2O3/SiO2比值较高,为0.18~0.29,平均0.25。K2O/Na2O比值高、变化大,为0.83~18.99,平均3.79。w(Fe2O3*+MgO)较高(Fe2O3*指以Fe2O3形式表示的全铁质量分数),为6.97%~10.83%,平均9.33%。w(CaO)低且变化大,为0.05%~2.24%,平均0.43%。

    稀土元素质量分数总体较高,ΣREE为110×10-6~249×10-6,平均177×10-6。轻稀土明显富集,(La/Yb)N、(La/Sm)N和LREE/HREE比值高,分别为6.93~14.05(平均9.93),3.37~3.96(平均3.65),8.57~13.22(平均10.58);与之对应的是粒陨石标准化曲线明显右倾(图 3)。重稀土总体平坦但中部下凹(图 3),(Gd/Yb)N为1.12~2.21,平均1.59。具较明显的铕负异常,δEu值为0.57~0.64,平均0.60。具轻微铈负异常,δCe值除个别样品偏低外(样品WY24-6为0.62),其他介于0.83~0.90。冷家溪群砂岩轻稀土富集、重稀土平坦、铕负异常明显等特征暨球粒陨石标准化曲线形态与典型的后太古宙页岩和上陆壳相似。

    图  3  稀土元素的球粒陨石标准化曲线(球粒陨石标准化参数据文献[42])
    Figure  3.  Chondrite-mornalized distribution patterns of the rare earth elements

    与PAAS相比,各组均具有大离子亲石元素Sr和Ba、高场强元素Nb、Dy、Y的显著亏损,相容元素Ni的弱亏损,以及Sc的较明显富集特征(图 4)。其他元素含量具程度不一的变化,但总体与PAAS相近。易家桥组、潘家冲组和雷神庙组-黄浒洞组的PAAS曲线形态总体上极为相似(图 4),反映出相似的微量元素组成特征,暗示不同时期沉积构造背景相近。

    图  4  微量元素的PAAS标准化曲线(PAAS标准化参数据文献[42])
    Figure  4.  PAAS-mornalized distribution patterns of the trace elements

    沉积盆地的构造环境对陆源沉积的物源类型、风化条件、搬运过程以及成岩后生作用等具有重要控制作用[43, 45-46],因此陆源沉积物的化学组成与沉积盆地构造环境具有较密切关系,沉积岩的某些主量元素和微量元素广泛用于判别古代沉积盆地的构造性质[43-44, 47-55]

    本次所采集金井地区冷家溪群砂岩样品均为新鲜岩石;其区域极浅变质主要与武陵运动有关,发生于封闭体系。因此,样品的主量元素含量可代表原始沉积岩物质组成,可用于构造环境判别。

    Roser等[48]提出了砂岩和泥岩沉积盆地构造环境的K2O/Na2O-w(SiO2)图解和SiO2/Al2O3-K2O/Na2O图解。在这2个图解中,金井地区冷家溪群砂岩大多数落于活动大陆边缘区(ACM),少量位于被动大陆边缘区(PM),位于被动大陆边缘区中的样品也大多紧邻活动大陆边缘区分布(图 5)。鉴此,可初步确定金井地区冷家溪群形成于活动大陆边缘环境。Roser等[48]所划分的活动大陆边缘(ACM)包括了一系列复杂的位于活动板块边界之上或邻近活动板块边界的构造上活动的构造单元,包括海沟、弧前、弧间和弧后在内的一系列盆地环境或与走滑断层有关的隆升区。鉴于湘东-湘东北地区北邻扬子古陆,由北向南,自岳阳-长沙-川口一带冷家溪群总体连续出露但却缺乏安山岩等典型的岛弧物质记录,同时也缺乏大洋玄武岩、超基性岩、硅质岩等板块结合带岩套[31],可排除弧前、弧间、海沟、大洋等环境,因此进一步推断研究区冷家溪群形成于弧后盆地,该盆地北邻构造相对稳定、物源成熟度较高的扬子古陆,南邻构造相对活动、物源成熟度较低的大陆岛弧。

    图  5  金井地区冷家溪群砂岩的K2O/Na2O-w(SiO2)(a)和SiO2/Al2O3-K2O/Na2O(b)构造环境判别图
    不同构造环境的界线据文献[55]:ARC.大洋岛弧;ACM.活动大陆边缘;PM.被动大陆边缘;A1.玄武质和安山质碎屑的岛弧环境;A2.长英质侵入岩碎屑的进化岛弧环境
    Figure  5.  Tectonic setting discrimination diagrams of K2O/Na2O-SiO2(a) and SiO2/Al2O3-K2O/Na2O(b) for the sandstones of Lengjiaxi Group in Jinjing area

    Al2O3/SiO2比值可以反映沉积岩成熟度,比值越低则成熟度越高[42]。易家桥组、潘家冲组和雷神庙组-黄浒洞组的Al2O3/SiO2平均值分别为0.24, 0.23, 0.28(表 2),反映早期沉积的易家桥组和潘家冲组成熟度高、中期沉积的雷神庙组-黄浒洞组成熟度低。因此,初步推测早期沉积与北面构造环境相对稳定的扬子陆缘更具亲缘性,中期沉积与南面构造环境相对活动的大陆岛弧更具亲缘性。与之互为印证的是,在K2O/Na2O-SiO2/Al2O3图解中,雷神庙组和黄浒洞组也总体上更靠近进化岛弧环境(图 5-b)。此外,早期沉积的Al2O3/SiO2平均值(0.24、0.23)与北面临湘地区冷家溪群(0.22)极为相近(表 2),而研究表明后者物源为扬子古陆[25],也指示早期沉积与扬子陆缘的亲缘性。

    Bhatia[43]和Bhatia等[44]将大陆边缘和大洋盆地划分为大洋岛弧、大陆岛弧、活动大陆边缘(具厚的陆壳,包括安第斯型大陆边缘和走滑大陆边缘;后文图 6~8中活动大陆边缘均为此含义)和被动大陆边缘等4种构造类型,并研究提出了判别沉积盆地板块构造环境的若干主量元素地球化学参数及主量元素判别函数图解。其最具判别意义的参数包括w(Fe2O3*+MgO)、w(TiO2)、Al2O3/SiO2、K2O/Na2O等,其中(Fe2O3*+MgO)代表岩石中相对基性的组分,Al2O3/SiO2大体反映石英的富集程度或长石与石英的比例,K2O/Na2O可能代表岩石中钾长石和白云母与斜长石的比例。金井地区冷家溪群砂岩在主量元素判别函数图解中均落于活动大陆边缘区(图 6),而w(Fe2O3*+MgO)和Al2O3/SiO2比值则与大陆岛弧更相近(表 2),与前述弧后盆地认识相吻合。值得注意的是,雷神庙组-黄浒洞组砂岩样品的w(Fe2O3*+MgO)(10.20%)、Al2O3/SiO2比值(平均值0.28)均明显高于易家桥组(分别为8.24%、0.24)和潘家冲组(分别为9.33%、0.23),反映前者基性组分和长石含量更高,暗示中期沉积与岛弧更具亲缘性,早期沉积与陆缘(或古陆)更具亲缘性。

    图  6  金井地区冷家溪群砂岩的主量元素构造环境判别分析图(构造环境判别函数和不同构造环境分布区域据文献[43])
    Figure  6.  Diagram of discriminant scores for the sandstones of Lengjiaxi Group in Jinjing area
    图  7  金井地区冷家溪群砂岩构造环境的Ti/Zr-La/Sc判别图(不同构造环境的分布区域据文献[44])
    A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘
    Figure  7.  Tectonic setting discrimination diagrams of Ti/Zr-La/Sc for the sandstones of Lengjiaxi Group in Jinjing area
    图  8  金井地区冷家溪群砂岩构造环境的La-Th-Sc(a)、Th-Co-Zr/10(b)和Th-Sc-Zr/10(c)判别图(不同构造环境的分布区域据文献[44])
    A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘
    Figure  8.  Tectonic setting discrimination diagrams of La-Th-Sc(a), Th-Co-Zr/10(b) and Th-Sc-Zr/10(c) for the sandstones of Lengjiaxi Group in Jinjing area

    在Al2O3/SiO2-(Feo+MgO)/(SiO2+K2O+Na2O)判别图中(图 9),易家桥组和潘家冲组主要落于进化岛弧区,而雷神庙组-黄浒洞组主要落入不成熟岛弧区,同样暗示早期沉积和中期沉积分别与北面扬子古陆和南面岛弧的亲缘性。

    图  9  金井地区冷家溪群砂岩沉积构造环境的Al2O3/SiO2-(FeO+MgO)/(SiO2+K2O+Na2O)判别图(不同构造环境之间的界线据文献[52])
    Figure  9.  Tectonic setting discrimination diagrams of Al2O3/SiO2-(FeO+MgO)/(SiO2+K2O+Na2O) for the sandstones of Lengjiaxi Group in Jinjing area

    综上述,主量元素地球化学特征反映金井地区冷家溪群的沉积环境为扬子陆块东南缘的弧后盆地,且早期沉积(易家桥组和潘家冲组)主要来源于北面的扬子陆块,而中期沉积(雷神庙组-黄浒洞组)可能更多来源于南面的岛弧。正是由于扬子陆块构造稳定性相对岛弧更高,更充分的风化作用和更长距离的搬运过程,导致源于扬子陆块的早期沉积物相对源于岛弧的中期沉积物具有更高的成分成熟度,使得早、中期沉积物的主量元素组成呈现出较明显的差异。

    由于沉积岩中的微量元素,尤其是La、Ce、Y、Th、Zr、Hf、Ti和Sc等活动性较弱且在海水中停留时间较短的元素在风化、搬运和沉积过程中能定量地转移到碎屑沉积物中,因而能较好地反映母岩性质和沉积盆地的构造环境[42, 44, 53-54]。冷家溪群为一套深海浊积扇-深海平原相沉积,并由一系列向上变浅序列构成,也有利于砂岩的微量元素特征继承母岩性质。研究区冷家溪群砂岩样品在Ti/Zr-La/Sc构造环境判别图中均落入大陆岛弧区(图 7);在Bhatia等[44]认为最具构造判别意义的La-Th-Sc、Th-Co-Zr/10和Th-Sc-Zr/10三角图中,落在大陆岛弧区(图 8-a, c)或大陆岛弧区和活动大陆边缘(图 8-b)。显然,微量元素判别图解主要显示大陆岛弧构造环境,与前述主量元素反映的早期沉积主要源于扬子古陆的认识似不一致,这一差别应与扬子陆块东南缘特殊的构造演化背景和物质组成有关。已有研究表明,扬子陆块东南缘在880~860 Ma前经历了岛弧与扬子陆块的弧-陆碰撞(物质记录有970~860 Ma的双溪坞弧火山岩等),尔后才是860~825 Ma的形成冷家溪群的弧后盆地发展阶段[20]。因此,源于弧后盆地北面扬子陆缘的早期沉积继承了先期岛弧母岩的微量元素特征,从而在微量元素判别图解中显示为大陆岛弧。这种因地球化学继承性导致沉积物形成环境的地球化学判别出现不同程度偏差的情况,在湘东南南华系-寒武系砂岩中即有显著体现[54]。综上述,尽管冷家溪群微量元素特征图解显示为大陆岛弧环境,但其沉积背景实为弧后盆地。正是由于砂岩主量元素组成(氧化物)更多与沉积期构造古地理格局及相应的物源区风化剥蚀作用和搬运过程有关,而微量元素尤其是活动性较弱的微量元素特征更多继承自母岩,才导致冷家溪群砂岩主量与微量元素特征反映的构造环境有别。在此情况下实际形成环境应以主量元素显示的环境信息为依据。

    对照Bhatia[43]和Bhatia等[44]给出的活动大陆边缘和大陆岛弧杂砂岩微量元素地球化学参数值(表 2),金井地区冷家溪群砂岩微量元素显示的环境较为复杂:La、Nd质量分数及ΣREE、(La/Yb)N、LREE/HREE、K/Rb、Rb/Sr、La/Y、Ti/Zr等特征值更接近活动大陆边缘,Sc、V、Co、Zn质量分数及Eu/Eu*、(Ga/Yb)N、Zr/Hf、La/Th、La/Sc、Th/Sc等特征值则更接近大陆岛弧,Ce、Th、Zr质量分数及Zr/Th比值介于大陆岛弧与活动大陆边缘之间或不同地层单位参数指示环境有别(表 2)。上述微量元素地球化学参数值反映的构造环境信息与弧后盆地认识相吻合。

    参考表 2中活动大陆边缘与大陆岛弧杂砂岩微量元素地球化学参数值的相对大小,比较冷家溪群早期沉积(易家桥组和潘家冲组)与中期沉积(雷神庙组-黄浒洞组)微量元素地球化学参数值的相对大小后发现,Hf、Sc、V、Co质量分数及(La/Yb)N、LREE/HREE、La/Y、La/Sc、Ti/Zr等特征值趋向指示中期沉积环境为大陆岛弧、早期沉积环境为活动陆缘,w(Zr)及(Ga/Yb)N、Rb/Sr、Zr/Th、La/Th等特征值趋向于指示中期沉积环境为活动陆缘、早期沉积环境为大陆岛弧,其他元素质量分数或特征值的差别很小而不能给出明确判断(表 2)。总之,更多参数的相对大小指示中期沉积环境(或源区)为大陆岛弧、早期沉积环境(或源区)为活动陆缘,此与上述主量元素特征反映的信息一致。

    综上述,与主量元素一样,微量元素的地球化学特征同样反映金井地区冷家溪群形成于弧后盆地,且早期易家桥组和潘家冲组主要来源于北面的扬子陆块,而中期雷神庙组-黄浒洞组可能更多来源于南面的大陆岛弧。

    根据上述讨论,并结合金井地区所在区域位置,推断冷家溪群沉积期早期-中期构造格局及演化如图 10所示。

    图  10  冷家溪群沉积早期-中期构造格局及演化
    Figure  10.  Tectonic framework and evolution in early-middle period of Lengjiaxi Group

    早期,受古华南洋板块向北西高角度俯冲影响,弧后软流圈上涌导致岩石圈伸展而形成宽阔的弧后盆地。弧后盆地北部和南部的沉积物源分别为扬子陆缘和大陆岛弧,金井地区处于盆地中部偏北而主要接受北邻扬子陆块来源沉积(图 10-a)。

    中期,古华南洋板块俯冲角度变缓,推动大陆岛弧向北西运移,弧后盆地收缩,弧后盆地南、北分区界线向北迁移,金井地区处于盆地中部偏南而主要接受南邻大陆岛弧来源沉积(图 10-b)。

    值得指出的是,区域上冷家溪群最上部的大药姑组前陆盆地砾岩仅分布于北部岳阳-临湘一带,佐证了上述沉积盆地由南向北收缩模式。

    前人对江南造山带冷家溪群及相当地层中的凝灰岩[5-6]和碎屑岩[2, 7-8, 10-14]进行了大量锆石U-Pb年龄测定,初步揭示冷家溪群及相当地层的时代约为860~825 Ma[14, 20]或860~820 Ma[11]。由于上述相关样品未对不同地层单位的界线提供年龄约束(有的甚至未明确组级岩石地层单位),且碎屑岩中锆石提供的年龄为取样对象沉积年龄的最大限值,理论上实际沉积年龄可能更小,因此冷家溪群及相当地层的内部年代框架目前尚未建立。结合地层序列,本文大体推断金井地区冷家溪群早期阶段沉积(易家桥组和潘家冲组沉积期)的时限为860~845 Ma,中期阶段沉积(雷神庙组和黄浒洞组沉积期)的时限为845~830 Ma,晚期阶段沉积(小木坪组和大药姑组)的时限为830~820 Ma。

    值得指出的是,研究区北面小水洞一带黄浒洞组砂岩和小木坪组板岩中既存在冷家溪群沉积期锆石(加权年龄值分别为(856±4)Ma和(845±18)Ma)(主要应来源于海底喷发的凝灰岩或凝灰质[11]以及盆地南邻大陆岛弧),又存在大量年龄值大于900 Ma的继承性锆石(占比分别达28%和74%)[14];研究区东南面浏阳南桥一带小木坪组板岩、研究区西邻马底驿一带冷家溪群砂岩和粉砂质泥岩的锆石年龄组成具有同样特征[2, 11],暗示弧后盆地中部沉积具有北侧扬子陆缘和南侧新生大陆岛弧的混源特征。由此可见,上述金井地区冷家溪群早期沉积主要源于北邻扬子陆块、中期沉积主要源于南邻大陆岛弧的认识属初步的定性判断,即早期和中期沉积中尚分别含有南邻大陆岛弧和北邻扬子陆块的成分,只是所占比重尚难确定。

    冷家溪群砂岩地球化学特征指示了弧后盆地构造格局,与之紧密关联的一个重要问题是盆地南邻的大陆岛弧在何处(现位),岛弧的位置直接关系到颇具争议的扬子板块与华夏板块之间钦杭结合带走向或位置[27-36]的正确厘定。区域上,自岳阳临湘往南经平江、金井、长沙、醴陵至川口一线,板溪群连续出露且均为砂岩、粉砂岩、泥岩等碎屑沉积,部分层位含酸性凝灰质或有酸性凝灰岩夹层产出[1],但缺少安山岩等典型的岛弧物质记录,也没有大洋玄武岩、超基性岩、硅质岩等板块结合带岩套发育。在临湘-平江-金井-长沙-醴陵-川口一线以东的浏阳文家市地区发育蛇绿岩套残片(代表弧后局部洋壳)、南桥发育具N-MORB特性的玄武岩,该线以西的益阳地区发育科马提质玄武岩,但它们都是弧后局部强拉张的产物[56-58],与大洋无关。此外,地震反射剖面揭示区域新元古界之下存在可能属古元古代的造山带[59],暗示冷家溪期沉积盆地形成于陆壳基底的张裂而非大洋盆地。鉴上,北自临湘、南至川口区域应该都属于弧后盆地的范围,大陆岛弧应在川口以南地区。

    由于南华纪-早古生代、晚古生代以及中生代等多阶段巨厚沉积的掩盖,冷家溪群沉积期南面岛弧物质无出露。Shu等[60]对南岭中西段花岗岩锆石进行了Hf同位素研究,结果表明以常宁-道县-恭城一线(安仁-双牌)和永兴-临武-连山一线(郴州-临武)为界可分为3个Hf同位素区,西区和东区具高的Hf TDM2年龄和低的εHf值,具典型陆壳组成特征;中区具低的Hf TDM2年龄和高的εHf值,具有弧-陆碰撞融合带特征。根据该成果资料,可大体推断冷家溪期弧后盆地南邻大陆岛弧位置大体在安仁-双牌一线[31]

    (1) 湘东北金井地区冷家溪群砂岩的主量元素组成变化较大,SiO2质量分数总体较低、Al2O3质量分数和Al2O3/SiO2比值较高、K2O/Na2O比值高且变化大。轻稀土富集、重稀土平坦、铕负异常显著等特征暨球粒陨石标准化曲线形态与典型的后太古宙页岩和上陆壳相似。

    (2) 主量元素和微量元素地球化学特征反映沉积环境为弧后盆地,且早期易家桥组和潘家冲组的成熟度较高,主要来源于北邻构造相对稳定的扬子陆块南缘;中期雷神庙组-黄浒洞组的成熟度较低,可能更多来源于南邻构造相对活动的大陆岛弧。

    (3) 冷家溪期构造格局与演化过程为:早期受古华南洋板块向北西高角度俯冲影响,弧后软流圈上涌导致岩石圈伸展而形成宽阔的弧后盆地,金井地区处于盆地北部而接受北邻扬子陆块来源沉积;中期古华南洋板块俯冲角度变缓并推动大陆岛弧向北西运移,弧后盆地收缩,金井地区因构造迁移而接受南邻大陆岛弧来源沉积。

    (4) 弧后盆地南邻大陆岛弧大体在安仁-双牌一线。

  • 图 1  冷家溪群及相当时代地层在湖南及邻区的分布(据文献[40]略修改)

    Figure 1.  Distribution of Lengjiaxi Group and its corresponding stratum

    图 2  金井地区地质及采样位置图(a)、冷家溪群柱状图(b)

    1.地质界线;2.角度不整合界线;3.断裂;4.样品位置及编号;K-E.白垩系-古近系;Qb1x.小木坪组;Qb1h.黄浒洞组;Qb1l.雷神庙组;Qb1p.潘家冲组;Qb1y.易家桥组;γJ.侏罗纪花岗岩;γQb.青白口纪花岗岩

    Figure 2.  Geological map of Jinjing area showing the sampling location (a) and the column of Lengjiaxi Group (b)

    图 3  稀土元素的球粒陨石标准化曲线(球粒陨石标准化参数据文献[42])

    Figure 3.  Chondrite-mornalized distribution patterns of the rare earth elements

    图 4  微量元素的PAAS标准化曲线(PAAS标准化参数据文献[42])

    Figure 4.  PAAS-mornalized distribution patterns of the trace elements

    图 5  金井地区冷家溪群砂岩的K2O/Na2O-w(SiO2)(a)和SiO2/Al2O3-K2O/Na2O(b)构造环境判别图

    不同构造环境的界线据文献[55]:ARC.大洋岛弧;ACM.活动大陆边缘;PM.被动大陆边缘;A1.玄武质和安山质碎屑的岛弧环境;A2.长英质侵入岩碎屑的进化岛弧环境

    Figure 5.  Tectonic setting discrimination diagrams of K2O/Na2O-SiO2(a) and SiO2/Al2O3-K2O/Na2O(b) for the sandstones of Lengjiaxi Group in Jinjing area

    图 6  金井地区冷家溪群砂岩的主量元素构造环境判别分析图(构造环境判别函数和不同构造环境分布区域据文献[43])

    Figure 6.  Diagram of discriminant scores for the sandstones of Lengjiaxi Group in Jinjing area

    图 7  金井地区冷家溪群砂岩构造环境的Ti/Zr-La/Sc判别图(不同构造环境的分布区域据文献[44])

    A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘

    Figure 7.  Tectonic setting discrimination diagrams of Ti/Zr-La/Sc for the sandstones of Lengjiaxi Group in Jinjing area

    图 8  金井地区冷家溪群砂岩构造环境的La-Th-Sc(a)、Th-Co-Zr/10(b)和Th-Sc-Zr/10(c)判别图(不同构造环境的分布区域据文献[44])

    A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘

    Figure 8.  Tectonic setting discrimination diagrams of La-Th-Sc(a), Th-Co-Zr/10(b) and Th-Sc-Zr/10(c) for the sandstones of Lengjiaxi Group in Jinjing area

    图 9  金井地区冷家溪群砂岩沉积构造环境的Al2O3/SiO2-(FeO+MgO)/(SiO2+K2O+Na2O)判别图(不同构造环境之间的界线据文献[52])

    Figure 9.  Tectonic setting discrimination diagrams of Al2O3/SiO2-(FeO+MgO)/(SiO2+K2O+Na2O) for the sandstones of Lengjiaxi Group in Jinjing area

    图 10  冷家溪群沉积早期-中期构造格局及演化

    Figure 10.  Tectonic framework and evolution in early-middle period of Lengjiaxi Group

    表  1  湘东北金井地区冷家溪群沉积岩地球化学组成

    Table  1.   Major and trace element compositions of the sedimentary rocks of Lengjiaxi Group in Jinjing area, northeast Hunan

    样品号 WY23-31 WY23-37 WY24-6 WY24-8 WY23-40 WY23-41 WY26-3 WY26-2 WY26-5 WY26-7 WY27-0 WY27-5 WY27-9 WY713 WY714 WY27-15
    层位岩性 易家桥组 潘家冲组 雷神庙组 黄浒洞组
    细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 粉-细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩
    SiO2 wB/% 63.87 71.99 67.54 62.5 68.06 71.15 64.41 63.30 62.39 66.49 65.44 62.19 60.85 60.78 61.95 63.80
    Al2O3 17.76 12.77 15.84 16.77 14.65 14.18 17.15 16.02 17.28 14.46 12.64 16.94 17.84 17.83 15.84 17.08
    Fe2O3 2.21 2.03 4.99 1.12 1.54 1.33 3.43 1.52 1.59 4.45 1.28 1.10 1.96 1.52 0.87 2.98
    FeO 4.65 3.89 1.32 5.38 5.11 4.23 2.69 5.65 5.56 3.62 5.53 5.96 5.58 5.90 5.63 4.27
    CaO 0.16 0.16 0.07 1.02 0.14 0.05 0.18 0.49 0.22 0.13 2.11 0.44 0.15 0.66 0.24 0.35
    MgO 1.81 1.27 1.43 2.44 1.98 1.29 2.18 2.67 3.10 2.23 2.81 2.82 2.95 2.68 2.42 2.51
    K2O 3.89 2.32 2.72 3.82 2.77 2.66 3.77 3.32 3.32 2.22 1.74 3.41 3.78 3.88 3.21 3.9
    Na2O 0.88 1.49 0.25 1.08 1.16 1.07 0.91 1.32 1.60 1.37 2.10 1.87 1.27 1.16 1.51 0.28
    TiO2 0.34 0.61 0.47 0.54 0.35 0.34 0.45 0.45 0.44 0.25 0.30 0.41 0.44 0.47 0.34 0.41
    P2O5 0.14 0.13 0.073 0.13 0.10 0.096 0.10 0.11 0.14 0.085 0.091 0.12 0.10 0.11 0.11 0.22
    MnO 0.028 0.062 0.053 0.240 0.044 0.030 0.027 0.120 0.083 0.140 0.250 0.097 0.100 0.16 0.096 0.08
    烧失量 3.70 2.57 4.57 4.64 3.46 2.95 4.04 4.33 4.08 3.88 5.47 3.91 4.30 4.50 7.42 3.84
    H2O+ 1.80 1.44 2.95 1.74 1.62 1.38 2.51 1.93 1.92 2.92 1.60 1.64 1.44 1.72 0.93 1.83
    FeOT+MgO 8.35 6.94 7.08 8.70 8.39 6.67 7.81 9.57 9.92 9.64 9.36 9.68 10.22 9.81 8.78 9.32
    Al2O3/SiO2 0.28 0.18 0.23 0.27 0.22 0.20 0.27 0.25 0.28 0.22 0.19 0.27 0.29 0.29 0.26 0.27
    K2O/Na2O 4.42 1.56 10.88 3.54 2.39 2.49 4.14 2.52 2.08 1.62 0.83 1.82 2.98 3.34 2.13 13.93
    La wB/10-6 44.7 43.2 63.7 41.2 37.9 42.4 38.3 37.8 40.7 30.9 23.6 37.9 39.2 36.4 27.8 47.8
    Ce 82.3 78.8 82.8 76.8 69.3 77.2 66.3 70.6 73.8 54.3 43.8 71.2 68.2 68.6 50.1 90.1
    Pr 10.10 9.80 14.40 9.42 8.64 9.67 8.45 8.71 9.21 7.29 5.44 8.71 8.94 8.27 5.97 11.2
    Nd 38.2 37.5 54.6 36.1 33.0 37.2 32.4 33.0 35.6 28.2 21.0 33.6 33.8 32.2 22.7 44.2
    Sm 7.25 7.01 9.81 6.94 6.16 7.07 6.07 6.24 6.92 5.58 4.27 6.43 6.52 6.20 4.50 8.63
    Eu 1.25 1.28 1.65 1.26 1.11 1.30 1.13 1.13 1.23 1.00 0.74 1.23 1.18 1.13 0.85 1.48
    Gd 5.52 5.58 7.65 5.61 4.81 5.4 4.92 5.18 5.46 4.38 3.50 5.22 5.1 4.94 3.69 6.61
    Tb 0.66 0.65 0.98 0.78 0.56 0.63 0.63 0.63 0.68 0.57 0.50 0.68 0.58 0.67 0.47 0.82
    Dy 2.66 2.98 4.63 4.12 2.26 2.78 3.03 2.95 3.42 2.84 2.65 3.27 2.74 3.46 2.54 3.78
    Ho 0.45 0.52 0.94 0.88 0.40 0.45 0.63 0.61 0.70 0.58 0.53 0.72 0.58 0.73 0.57 0.72
    Er 1.60 1.60 2.86 2.74 1.34 1.73 2.10 2.01 2.22 3.04 1.70 2.33 1.98 2.28 1.91 2.34
    Tm 0.31 0.29 0.53 0.52 0.26 0.30 0.39 0.39 0.42 0.36 0.31 0.45 0.41 0.45 0.39 0.46
    Yb 2.27 2.03 3.42 3.56 1.90 2.22 2.76 2.68 2.93 2.42 1.97 3.16 2.77 3.06 2.65 3.16
    Lu 0.43 0.38 0.59 0.62 0.36 0.41 0.52 0.48 0.54 0.42 0.37 0.56 0.51 0.55 0.46 0.56
    ΣREE 198.00 192.00 249.00 191.00 168.00 189.00 168.00 172.00 184.00 142.00 110.00 175.00 173.00 169.00 125.00 222.00
    (La/Yb)N 13.00 14.05 12.30 7.64 13.17 12.61 9.16 9.31 9.17 8.43 7.91 7.92 9.34 7.85 6.93 9.99
    (La/Sm)N 3.76 3.76 3.96 3.62 3.75 3.66 3.85 3.69 3.58 3.38 3.37 3.59 3.66 3.58 3.77 3.38
    (Gd/Yb)N 1.95 2.21 1.80 1.27 2.03 1.95 1.43 1.55 1.50 1.45 1.43 1.33 1.48 1.30 1.12 1.68
    LREE/HREE 13.22 12.66 10.51 9.12 13.13 12.56 10.19 10.55 10.23 8.71 8.57 9.71 10.76 9.47 8.83 11.02
    δEu 0.59 0.61 0.57 0.60 0.61 0.62 0.62 0.60 0.60 0.60 0.57 0.64 0.61 0.61 0.62 0.58
    δCe 0.88 0.87 0.62 0.89 0.88 0.87 0.84 0.89 0.87 0.83 0.88 0.90 0.83 0.90 0.88 0.89
    Cu wB/10-6 36.6 18.8 35.3 38.8 32.2 17.3 18.4 42.7 39.9 35.1 32.8 40.9 33.3 34.3 35.1 30.0
    Pb 38.9 16.3 9.34 14.9 22.0 8.5 8.44 22.2 13.0 16.0 17.8 22.2 18.2 17.5 17.4 22.7
    Zn 125.0 105.0 143.0 128.0 106.0 95.2 94.8 125.0 113.0 111.0 103.0 122.0 122.0 128.0 102.0 110.0
    Cr 109.0 76.4 125 97.3 109.0 66.4 137.0 128.0 176.0 205.0 197.0 146.0 138.0 121.0 128.0 92.3
    Ni 41.0 26.3 59.9 37.5 40.0 26.8 41.0 46.8 49.2 54.3 45.6 45.8 49.8 45.7 36.3 37.7
    Co 12.10 8.74 12.40 15.60 12.30 7.90 12.90 18.40 18.40 18.20 15.60 18.40 19.00 16.90 14.20 15.50
    Cd 0.10 0.10 0.10 0.12 0.11 0.08 0.11 0.11 0.06 0.14 0.13 0.10 0.12 0.10 0.08 0.11
    Li 61.0 36.5 35.0 46.6 56.2 46.5 43.7 57.2 60.6 67.7 66.4 60.4 67.4 71.4 24.0 55.4
    Rb 199 107 131 197 140 119 192 170 174 107 87.9 173 196 184 158 194
    Cs 16.3 10.0 11.2 14.9 11.8 10.8 13.9 13.2 13.8 9.8 6.9 13.7 16.5 12.8 14.4 18.0
    W 1.94 1.73 5.09 2.45 2.40 1.31 1.50 1.79 1.99 1.09 0.71 1.29 1.42 1.6 2.44 2.51
    Mo 0.84 0.51 0.74 0.29 0.16 0.41 0.19 0.23 0.2 0.15 0.22 0.32 0.16 0.25 1.02 0.20
    As 18.50 11.30 1.62 25.80 10.40 12.00 10.20 10.60 3.13 9.31 15.10 8.70 4.62 2.29 51.80 54.10
    Sb 0.67 0.39 1.46 2.10 0.27 0.33 0.57 0.56 0.55 0.46 0.70 0.81 0.75 4.29 34.50 4.45
    Bi 0.84 0.28 0.19 0.34 1.00 0.11 0.35 0.42 0.30 0.31 0.20 0.47 0.35 0.30 0.46 0.61
    Hg 0.014 0.013 0.025 0.046 0.012 0.022 0.019 0.019 0.020 0.020 0.023 0.034 0.013 0.017 0.031 0.020
    Sr 52.4 49.1 12.4 34.4 42.2 43.4 25.5 32.8 29.2 31.2 86.1 35.6 24.2 34.2 38.5 31.2
    Ba 438 352 375 316 350 406 359 321 346 225 214 344 406 390 336 379
    V 121.0 86.6 107.0 116.0 99.3 86.1 130.0 124.0 136.0 118.0 97.2 133.0 140.0 133.0 120.0 119.0
    Sc 20.6 13.0 16.8 19.3 16.6 13.7 23.1 21.8 25.5 21.6 18.3 23.6 26.2 24 21.3 20.1
    Nb 9.24 14.40 8.45 10.30 9.62 8.83 9.47 8.77 8.16 3.84 3.78 9.13 7.22 8.11 6.17 7.56
    Ta 0.70 1.29 0.81 0.91 0.71 0.77 0.73 0.78 0.86 0.64 0.29 1.29 0.60 0.83 0.77 0.58
    Y 13.4 13.8 26.2 21.4 10.3 12.0 16.6 15.4 17.6 15.1 13.9 17.3 14.5 17.6 14.1 18.2
    Zr 194 296 269 204 192 258 176 178 176 189 172 178 165 172 170 198
    Hf 5.50 8.25 7.40 5.85 5.50 7.20 5.00 5.00 5.00 5.40 4.90 5.00 4.60 5.00 5.60 5.60
    Be 3.05 1.92 2.95 2.76 2.51 2.19 2.52 2.54 2.52 1.88 1.51 2.56 2.76 2.71 2.44 2.94
    B 116.6 68.8 83.9 101.8 80.3 78.2 86.4 96.4 41.8 63.7 57.7 80.1 84.5 80.8 124.7 106.6
    Ga 22.6 16.0 18.2 22.2 18.3 17.3 21.4 21.0 21.2 15.6 13.8 22.7 23.0 23.0 20.7 21.6
    Sn 5.23 3.41 4.36 5.03 4.45 4.02 4.475 4.05 5.16 3.60 2.84 4.67 4.70 5.46 4.51 5.20
    U 3.01 2.59 2.84 2.80 2.64 2.74 2.69 2.60 2.46 2.02 1.81 2.62 2.40 2.57 2.54 2.77
    Th 18.4 15.6 15.1 15.1 14.1 14.6 15.0 15.4 14.2 12.3 10.2 19.4 14.2 15.3 16.9 16.9
      注:①所有样品由国土资源部长沙矿产资源监督检测中心完成测试,测试仪器为:ICAP-6300电感耦合等离子体发射光谱仪、X Series 2 ICP-MS电感耦合等离子体质谱仪、PGS-2二米光栅光谱仪、AFS-830a双道原子荧光光谱仪;②FeOT表示全铁;③ΣREE为元素La~Lu含量总和,LREE/HREE = Σ(La~Sm)/ Σ(Gd~Lu) [41],球粒陨石标准化参数据文献[42]
    下载: 导出CSV

    表  2  金井地区冷家溪群砂岩与不同构造环境下杂砂岩的化学组成对比

    Table  2.   Comparison of chemical compositions of the sandstones of Lengjiaxi Group in Jinjing area with the graywackes from various tectonic settings

    金井地区冷家溪群砂岩 临湘地区冷家溪群 沅陵地区冷家溪群 显生宙不同构造环境下杂砂岩
    易家桥组 潘家冲组 雷神庙组-黄浒洞组 大洋岛弧 大陆岛弧 活动大陆边缘 被动大陆边缘 PAAS 上陆壳
    SiO2 wB/% 69.55 69.03 65.37 71.29 73.62 58.83 70.69 73.86 81.95 62.80 66.00
    Al2O3 16.53 15.92 18.05 15.34 12.71 17.11 14.04 12.89 8.41 18.9 15.20
    Fe2O3 2.71 2.27 1.77 2.44 2.03 1.95 1.43 1.30 1.32
    FeO 3.98 4.85 5.78 3.44 4.62 5.52 3.05 1.58 1.76 6.50 4.50
    CaO 0.37 0.50 0.39 0.26 0.64 5.83 2.68 2.48 1.89 1.30 4.20
    MgO 1.82 2.44 2.82 1.61 1.97 3.65 1.97 1.23 1.39 2.20 2.20
    K2O 3.34 2.96 3.84 2.93 1.80 1.60 1.89 2.90 1.71 3.70 3.40
    Na2O 0.96 1.43 1.29 1.78 1.78 4.10 3.12 2.77 1.07 1.20 3.90
    TiO2 0.51 0.39 0.44 0.69 0.60 1.06 0.64 0.46 0.49 1.00 0.50
    P2O5 0.12 0.11 0.14 0.12 0.10 0.26 0.16 0.09 0.12 0.16
    MnO 0.10 0.10 0.11 0.10 0.14 0.15 0.10 0.10 0.05 0.11
    Fe2O3*+MgO 8.24 9.33 10.20 7.25 8.42 11.73 6.79 4.63 2.89 9.35 7.15
    Al2O3/SiO2 0.24 0.23 0.28 0.22 0.17 0.29 0.20 0.18 0.10 0.30 0.23
    K2O/Na2O 5.10 2.29 4.84 1.66 1.07 0.39 0.61 0.99 1.60 3.08 0.87
    n 4 7 5 6 12 7 9 7 7
    La 48.2 35.9 37.8 39.5 35.3 8.2 27.0 37.0 39.0 38.0 30.0
    Ce wB/10-6 80.2 65.0 69.6 73.4 67.4 19.4 59.0 78.0 85.0 80.0 64.0
    Nd 41.6 31.5 33.3 36.2 31.0 11.2 28.3 35.8 42.0 32.0 26.0
    ΣREE 207 162 173 190 170 58.0 146 186 210 183 146
    Eu/Eu* 0.59 0.60 0.61 0.73 0.62 1.04 0.80 0.60 0.55 0.66 0.65
    (La/Yb)N 11.75 9.97 8.41 7.10 7.06 2.80 7.50 8.30 10.8 9.20 9.20
    (Gd/Yb)N 1.81 1.62 1.38 1.38 1.36 1.31 1.49 1.26 2.75 1.36 1.40
    LREE/HREE 11.41 10.60 9.99 7.23 7.14 3.80 7.70 9.10 8.50 9.45 9.47
    K/Rb 175 174 176 213 176 578 219 189 178 192 250
    Rb/Sr 4.28 3.41 5.53 1.72 1.78 0.05 0.65 0.89 1.19 0.8 0.32
    Th 16.1 13.7 16.5 10.3 11.0 2.27 11.1 18.8 16.7 14.6 10.7
    Zr wB/10-6 241 192 177 472 344 96 229 179 298 210 190
    Hf 6.8 5.4 5.2 3.5 2.5 2.1 6.3 6.8 10.1 5.0 5.8
    K/Th 1 726 1 796 1 925 2 360 1 354 4 055 1 296 1 252 681 2 103 2 617
    Zr/Hf 35.7 35.3 34.2 134.8 135.4 45.7 36.3 26.3 29.5 42.00 32.76
    Zr/Th 15.0 14.0 10.7 45.8 31.2 48 21.5 9.5 19.1 14.4 17.8
    La/Th 3.00 2.63 2.29 3.83 3.20 4.26 2.36 1.77 2.2 2.60 2.80
    La/Y 2.58 2.49 2.31 1.26 1.24 0.48 1.02 1.33 1.31 1.41 1.36
    Sc 17 20 23 14.7 14.5 19.5 14.8 8 6 16 11
    Cr 102 145 125 37 51 26 39 110 35
    Ni wB/10-6 41 43 43 28 39 11 13 10 8 55 20
    V 108 113 129 98 95 131 89 48 31 150 60
    Co 12 15 17 11 17 18 12 10 5 23 10
    Zn 125 107 117 102 101 89 74 52 26 85 71
    La/Sc 2.77 1.79 1.64 2.69 2.43 0.55 1.82 4.55 6.25 2.38 2.73
    Th/Sc 0.92 0.68 0.72 0.70 0.76 0.15 0.85 2.59 3.06 0.91 0.97
    Sc/Cr 0.17 0.14 0.18 0.57 0.32 0.3 0.16 0.15 0.31
    Ti/Zr 12.8 12.1 14.8 8.72 10.42 56.8 19.7 15.3 6.74 28.6 15.8
    n 4 7 5 6 12 11 32 10 15
      注:①n为样品数;稀土元素球粒陨石标准化参数据文献[42],Eu/Eu*=EuN/(SmN×GdN)1/2;②临湘地区和沅陵地区数据据文献[25];③不同构造环境杂砂岩的数据据文献[43-44];澳大利亚后太古宙平均页岩(PAAS)和上陆壳成分据文献[42];④带下划线的参数为最具构造环境判别意义的参数[43-44]
    下载: 导出CSV
  • [1] 湖南省地质矿产局.湖南省岩石地层[M].武汉:中国地质大学出版社, 1997.
    [2] Wang Xiaolei, Zhou Jincheng, Griffin W L, et al.Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathysia blocks[J].Precambrian Res., 2007, 159:117-131. doi: 10.1016/j.precamres.2007.06.005
    [3] 高林志, 杨明桂, 丁孝忠, 等.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄:对江南新元古代造山带演化的制约[J].地质通报, 2008, 27(10):1744-1751. doi: 10.3969/j.issn.1671-2552.2008.10.017
    [4] 高林志, 戴传固, 刘燕学, 等.黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J].地质通报, 2010, 29(9):1259-1267. doi: 10.3969/j.issn.1671-2552.2010.09.001
    [5] 高林志, 陈峻, 丁孝忠, 等.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄:对武陵运动的制约[J].地质通报, 2011, 30(7):1001-1008. doi: 10.3969/j.issn.1671-2552.2011.07.001
    [6] 高林志, 丁孝忠, 庞维华, 等.湘东北前寒武纪仓溪岩群变凝灰岩SHRIMP锆石U-Pb年龄[J].地质通报, 2011, 30(10):1479-1484. doi: 10.3969/j.issn.1671-2552.2011.10.001
    [7] Wang Wei, Wang Fang, Chen Fukun, et al.Detrital zircon ages and Hf-Nd isotopic composition of Neoproterozoic sedimentary rocks in the Yangtze Block:Constraints on the deposition age and provenance[J].Journal of Geology, 2010, 118(1):79-94. doi: 10.1086/648533
    [8] Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng.Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:Coeval arc magmatism and sedimentation[J].Precambrian Research, 2009, 170(1):27-42. http://www.sciencedirect.com/science/article/pii/S0301926808002453
    [9] 柏道远, 贾宝华, 刘伟, 等.湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束[J].地质学报, 2010, 84(12):1715-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012001.htm
    [10] Wang Wei, Zhou Meifu, Yan Danping, et al.Detrital zircon record of neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China[J].Precambrian Research, 2013, 235:1-19. doi: 10.1016/j.precamres.2013.05.013
    [11] 孟庆秀, 张健, 耿建珍, 等.湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J].中国地质, 2013, 40(1):191-216. doi: 10.3969/j.issn.1000-3657.2013.01.014
    [12] Zhang Yuzhi, Wang Yuejun, Zhang Yanhua, et al.Neoproterozoic assembly of the Yangtze and Cathaysia Blocks:Evidence from the Cangshuipu Group and associated rocks along the central Jiangnan Orogen, South China[J].Precambrian Research, 2015, 269:18-30. doi: 10.1016/j.precamres.2015.08.003
    [13] Yang Chuan, Li Xianhua, Wang Xuance, et al.Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited:Insights from detrital zircon U-Pb age and Hf-O Isotopes[J].Precambrian Research, 2015, 266:165-178. doi: 10.1016/j.precamres.2015.05.016
    [14] 杨雪, 张玉芝, 崔翔, 等.湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学[J].地球科学, 2020, 45(9):3461-3674. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202009023.htm
    [15] 柏道远, 贾宝华, 钟响, 等.雪峰造山带新元古代构造演化框架[J].沉积与特提斯地质, 2011, 31(3):78-87. doi: 10.3969/j.issn.1009-3850.2011.03.013
    [16] 徐备.论赣东北-皖南晚元古代沟弧盆体系[J].地质学报, 1990, 64(1):33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199001003.htm
    [17] 周金城, 王孝磊, 邱检生.江南造山带西段岩浆作用特性[J].高校地质学报, 2005, 11(4):527-533. doi: 10.3969/j.issn.1006-7493.2005.04.008
    [18] 周金城, 王孝磊, 邱检生.江南造山带是否格林威尔期造山带:关于华南前寒武纪地质的几个问题[J].高校地质学报, 2008, 14(1):64-72. doi: 10.3969/j.issn.1006-7493.2008.01.007
    [19] Li J Y, Wang X L, Zhang F F, et al.A rhythmic source change of the Neoproterozoic basement meta-sedimentary sequences in the Jiangnan Orogen:Implications for tectonic evolution on the southeastern margin of the Yangtze Block[J].Precambrian Research, 2016, 280:46-60. doi: 10.1016/j.precamres.2016.04.012
    [20] 王孝磊, 周金城, 陈昕, 等.江南造山带的形成与演化[J].矿物岩石地球化学通报, 2017, 36(5):714-735. doi: 10.3969/j.issn.1007-2802.2017.05.003
    [21] Zhang F F, Wang X L, Wang D, et al. Neoproterozoic backarc basin on the southeastern margin of the Yangtze Block during Rodinia assembly:New evidence from provenance of detrital zircons and geochemistry of mafic rocks[J].Geological Society of America Bulletin, 2017, 129, doi: 10.1130/B31528.1
    [22] 张宝成.雪峰隆起区前震旦纪地壳构造演化及其金矿成矿浅析[J].湖南地质, 1992, 11(1):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ199201000.htm
    [23] 陈文斌.湖南武陵期沉积盆地构造背景及其演化[J].国土资源导刊, 2009, 1(1):70-72. doi: 10.3969/j.issn.1672-5603.2009.01.021
    [24] 李献华, 王选策, 李武显, 等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J].地球化学, 2008, 37(4):382-398. doi: 10.3321/j.issn:0379-1726.2008.04.012
    [25] 张恒, 谢莹, 张传恒, 等.江南造山带西段冷家溪群沉积地质特征及构造属性探讨[J].地学前缘, 2013, 20(6):269-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306035.htm
    [26] 王自强, 高林志, 丁孝忠, 等."江南造山带"变质基底形成的构造环境及演化特征[J].地质论评, 2012, 58(3):401-413. doi: 10.3969/j.issn.0371-5736.2012.03.001
    [27] 洪大卫, 谢锡林, 张季生.试析杭州-诸广山-花山高εNd值花岗岩带的地质意义[J].地质通报, 2002, 21(6):348-354. doi: 10.3969/j.issn.1671-2552.2002.06.012
    [28] 王光杰, 滕吉文, 张中杰.中国华南大陆及陆缘地带的大地构造基本格局[J].地球物理学进展, 2000, 15(3):25-43. doi: 10.3969/j.issn.1004-2903.2000.03.004
    [29] 郝义, 李三忠, 金宠, 等.湘赣桂地区加里东期构造变形特征及成因分析[J].大地构造与成矿学, 2010, 34(2):166-180. doi: 10.3969/j.issn.1001-1552.2010.02.003
    [30] Wang Y J, Fan W M, Guo F, et al.Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China:Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J].International Geology Review, 2003, 45(3):263-286. doi: 10.2747/0020-6814.45.3.263
    [31] 柏道远, 李银敏, 钟响, 等.湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质[J].地球科学, 2018, 43(7):2496-2517. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201807022.htm
    [32] 王鹏鸣, 于津海, 孙涛, 等.湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义[J].岩石学报, 2012, 28(12):3841-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212005.htm
    [33] 柏道远, 贾宝华, 钟响, 等.湘中南晋宁期和加里东期构造线走向变化成因[J].地质力学学报, 2012, 18(2):165-177. doi: 10.3969/j.issn.1006-6616.2012.02.007
    [34] 饶家荣, 王纪恒, 曹一中.湖南深部构造[J].湖南地质, 1993(增刊7):1-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ1993S1000.htm
    [35] 傅昭仁, 李紫金, 郑大瑜.湘赣边区NNE向走滑造山带构造发展样式[J].地学前缘, 1999, 6(4):263-272. doi: 10.3321/j.issn:1005-2321.1999.04.009
    [36] 张国伟, 郭安林, 王岳军, 等.中国华南大陆构造与问题[J].中国科学:地球科学, 2013, 43(10):1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
    [37] 陕亮, 庞迎春, 柯贤忠, 等.湖南省东北部地区桃江县木瓜园钨多金属矿成岩成矿时代及其对区域成矿作用的启示[J].地质科技情报, 2019, 8(1):100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901011.htm
    [38] 苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [39] 陕亮, 柯贤忠, 庞迎春, 等.湘东北栗山地区新元古代岩浆活动及其地质意义:锆石U-Pb年代学、Lu-Hf同位素证据[J].地质科技情报, 2017, 36(6):32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706005.htm
    [40] 周金城, 王孝磊, 邱检生.江南造山带形成过程中若干新元古代地质事件[J].高校地质学报, 2009, 15(4):453-459. doi: 10.3969/j.issn.1006-7493.2009.04.003
    [41] Mclennan S M.Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J].Rev.Mineral, 1989, 21:169-200. http://ci.nii.ac.jp/naid/10008805387
    [42] Taylor S R, Mclennan S M.The continental crust:Its composition and evolution[M].Oxford:Blackwell, 1985.
    [43] Bhatia M R.Plate tectonics and geochemical compositon of sandstones[J].J.Geol., 1983, 91:611-627. doi: 10.1086/628815
    [44] Bhatia M R, Crook K A W.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J].Contrib.Mineral.Petrol., 1986, 92:181-193. doi: 10.1007/BF00375292
    [45] Pettijohn F J, potter P E, Siever R.Sand and sandstone[M].New York:Springer-Verlag, 1972.
    [46] Blatt H, Middleton G V, Murray R.Origin of sedimentary rocks[M].Englewood Cliffs, N J:Prentice-Hall, 1980.
    [47] McLennan S M, Taylor S R, McCulloch M T, et al.Geochemical and Nd-Sr isotopic composition of deep-sea turbidites:Crustal evolution and plate tectonic associations[J].Geochim. Cosmochim. Acta, 1990, 54(7):2015-2050. doi: 10.1016/0016-7037(90)90269-Q
    [48] Roser B P, Korsch R J.Determinaiton of tectonic setting of sandstone-mudstone suites using SiO2content and K2O/Na2O ratio[J].J.Geol., 1986, 94(5):635-650. doi: 10.1086/629071
    [49] Floyd P A, Leveridge B E.Tectonic environment of the Devonian Gramscatho Basin, south Cornwall:Framework mode and geochemical evidence from turbiditic sandstones[J].J.Geol.Soc.London, 1987, 144:531-542. doi: 10.1144/gsjgs.144.4.0531
    [50] Cullers R L, Basu A, Suttner L J.Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A[J].Chem.Geol., 1988, 70(7):335-348. http://www.sciencedirect.com/science/article/pii/0009254188901234?_fmt=full
    [51] Frost C D, Coombs D S.Nd isotope character of New Zealand sediments:Implications for terrane concepts and crustal evolution[J].Am.J.Sci., 1989, 289:744-770. doi: 10.2475/ajs.289.6.744
    [52] Kumon F, Kiminami K.Modal and chemical compositions of the representative sandstones from the Japanese Islands and their tectonic implications[C]//Kumon F, Yu K M.Proceedings 29th IGC, Part A.Utrecht: VSP, 1994: 135-151.
    [53] 顾雪祥, 刘建明, Oskar Schula, 等.江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约[J].地球化学, 2003, 32(5):406-426. doi: 10.3321/j.issn:0379-1726.2003.05.002
    [54] 柏道远, 周亮, 王先辉, 等.湘东南南华系-寒武系砂岩地球化学特征对华南新元古代-早古生代构造背景的制约[J].地质学报, 2007, 81(6):755-771. doi: 10.3321/j.issn:0001-5717.2007.06.004
    [55] 魏震洋, 于津海, 王丽娟, 等.南岭地区新元古代变质沉积岩的地球化学特征及构造意义[J].地球化学, 2009, 38(1):1-19. doi: 10.3321/j.issn:0379-1726.2009.01.001
    [56] 贾宝华, 彭和求, 唐晓珊, 等.湘东北文家市蛇绿混杂岩带的发现及意义[J].现代地质, 2004, 18(2):229-236. doi: 10.3969/j.issn.1000-8527.2004.02.013
    [57] 周金城, 王孝磊, 邱检生, 等.南桥高度亏损N-MORB的发现及其地质意义[J].岩石矿物学杂志, 2003, 22(3):211-216. doi: 10.3969/j.issn.1000-6524.2003.03.001
    [58] 王孝磊, 周金城, 邱检生, 等.湖南中-新元古代火山-侵入岩地球化学及成因意义[J].岩石学报, 2003, 19(1):49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301005.htm
    [59] Dong S W, Zhang Y Q, Gao R, et al.A possible buried Paleoproterozoic collisional orogen beneath central South China:Evidence from seismic-reflection profiling[J].Precambrian Research, 2015, 264:1-10. doi: 10.1016/j.precamres.2015.04.003
    [60] Shu Xujie, Wang Xiaolei, Sun Tao, et al.Crustal formation in the Nanling Range, South China Block:Hf isotope evidence of zircons from Phanerozoic granitoids[J].Journal of Asian Earth Sciences, 2013, 74:210-224. doi: 10.1016/j.jseaes.2013.01.016
  • 期刊类型引用(12)

    1. 李银敏,柏道远,李彬,姜文,蒋启生,彭云益. 湘东北燕山期动力学背景约束:金井地区花岗质侵入岩年代学和地球化学特征. 矿物岩石地球化学通报. 2024(04): 843-863 . 百度学术
    2. 蔡欣豫,王伟,田洋. 江南造山带中段新元古代构造演化——来自碎屑锆石U-Pb和Lu-Hf同位素的启示. 沉积学报. 2024(06): 1986-2005 . 百度学术
    3. 柏道远,文春华,黄建中,李彬,周芳春,张立平,陈虎,陈剑锋,陈旭. 湘东北幕阜山地区中生代构造—岩浆特征及其对稀有金属伟晶岩的控制. 地质论评. 2023(03): 855-880 . 百度学术
    4. 吴能杰,柏道远,李彬,魏方辉. 湘东北万古金矿区变形序列及其对控矿构造属性的约束. 桂林理工大学学报. 2023(02): 161-175 . 百度学术
    5. 饶诗怡,伏美燕,邓虎成,吴冬,胥旺,陈培,郭恒玮. 基于岩相和地球化学特征的沉积古地貌恢复新方法:以川中栖霞组为例. 地质科技通报. 2023(05): 205-213 . 本站查看
    6. 范庆超,徐兆凯,孙天琪,李铁刚,常凤鸣. 晚始新世-渐新世东南印度洋沉积物源-汇过程及其古气候指示意义. 地质科技通报. 2022(03): 9-19 . 本站查看
    7. 石创. 珠江口盆地阳江东凹文昌组泥岩稀土元素特征及其地质意义. 地质科技通报. 2022(03): 166-172 . 本站查看
    8. 王珩,赵红岩,苏鹏,邱春光,宋宇,杨宇航,沈传波,胡守志. 东非裂谷Albertine盆地上中新统-下上新统烃源岩地球化学特征与沉积环境. 地质科技通报. 2022(04): 91-99 . 本站查看
    9. 段其发,曹亮,周云,吴年文,邹先武,方喜林. 扬子陆块南部新元古代煌斑岩锆石U-Pb年龄及构造背景. 华南地质. 2022(04): 583-595 . 百度学术
    10. 柏道远,李彬,李银敏,陈迪,凌跃新. 湖南常德-安仁断裂印支期构造运动分段性:来自花岗岩的约束. 地质科技通报. 2021(05): 173-187 . 本站查看
    11. 祝明明,邹建林,王闯,冯超,付宏林,赵鹏,陈阳,徐海军. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态. 地质科技通报. 2021(06): 55-69 . 本站查看
    12. 杨俊,罗鹏,凌跃新,杨少辉,柏道远,魏方辉,曹顺红,彭能立. 湘北桑植-石门一带早中生代褶皱叠加特征及变形机制. 地质科技通报. 2021(06): 43-54 . 本站查看

    其他类型引用(1)

  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1720
  • PDF下载量:  5564
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-03-06

目录

/

返回文章
返回