留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝洞型碳酸盐岩靶向酸压目标体分类与建模

宋志峰 张建光

宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303
引用本文: 宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303
Song Zhifeng, Zhang Jianguang. Classification and modeling of targeted fracture-cave bodies in acid fracturing[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303
Citation: Song Zhifeng, Zhang Jianguang. Classification and modeling of targeted fracture-cave bodies in acid fracturing[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303

缝洞型碳酸盐岩靶向酸压目标体分类与建模

doi: 10.19509/j.cnki.dzkq.2021.0303
基金项目: 

国家自然科学基金项目 41502131

中央高校基本科研业务费专项 18CX02101A

国家重大专项 2016ZX05014-004-007

国家重大专项 2016ZX05053-14

详细信息
    作者简介:

    宋志峰(1983-), 男, 副研究员, 主要从事油气田开发研究工作。E-mail: zhifengsong@126.com

    通讯作者:

    张建光(1983-), 男, 讲师, 主要从事油气田开发研究工作。E-mail: eduzjg@163.com

  • 中图分类号: P588.24+5

Classification and modeling of targeted fracture-cave bodies in acid fracturing

  • 摘要: 塔河油田碳酸盐岩井周缝洞型储集体靶向酸压改造工艺针对性强,对于靶向目标精准定位与表征要求很高。围绕井周酸压增储提效,精准定量表征井筒附近储集体主应力方位、距离、规模、空间分布成为亟待解决的关键问题。从井孔与井周储层识别角度切入,采用一维资料-三维资料,多方法结合定量识别与刻画不同储层类型,在分类表征基础上,实现了模型的分类整合,构建了单元级次的多类型缝洞融合储层模型。然后,在单元级次模型基础上,创建了井周不同范围的可视化三维定量模型构建技术方法,建立了实际单井定量模型,并基于酸压靶向目标体三级八因素分类划分指标体系,确定了7种类型靶向目标体及适应的酸压技术方法。靶向酸压工艺矿场应用显示:靶向酸压井措施效果显著,同样区块范围井,比常规酸压方法平均增产倍比大,显著提高了酸压工艺的针对性和靶向性,有较好的推广应用前景。

     

  • 图 1  不同储层类型的识别参数模型

    Figure 1.  Identification parameters of different reservoir types

    图 2  不同储层类型的双压降分布

    Figure 2.  Dual pressure drop distribution of different reservoir types

    图 3  大尺度裂缝储层的刻画

    Figure 3.  Identification of large scale fracture reservoirs

    图 4  洞穴类型储层地震反演

    Figure 4.  Seismic inversion of the cave reservoirs

    图 5  溶蚀孔洞类型储层地震反演

    Figure 5.  Seismic inversion of the fracture-vug reservoirs

    图 6  S80单元多元储层融合模型

    Figure 6.  Multiple reservoir fusion model of S80 unit

    图 7  井周靶向储集体目标刻画流程

    Figure 7.  Characterization process of target reservoir near wellbore

    图 8  TK775H井周靶向储集体目标模型

    Figure 8.  Characterization process of target reservoir near wellbore

    图 9  井筒周围不同酸压区域的储集体特征

    Figure 9.  Reservoir characteristics of different aciding-fracture areas around wellbore

    表  1  塔河S80单元人工解释断层属性特征

    Table  1.   Fault attribute characteristics of S80 in Tahe Oilfield

    方位 断层数/条 倾角/(°) 长度/m
    平均值 范围 平均值 范围
    北西向 15 80 72~86 590 180~1 400
    北东向 19 82 74~85 760 140~2 600
    东西向 9 79 70~83 120 110~220
    总计 43 81 70~86 630 110~2 600
    下载: 导出CSV

    表  2  塔河靶向储集体目标划分指标体系

    Table  2.   Reservoir targets classification index system

    距离与方位 空间展布 施工参数
    与井筒距离/m 与主应力夹角/
    (°)
    平面分布与厚度/m 储量/
    104t
    形态结构(分层分段) 靶体数量 井型与海拔深度/m 避水高度/
    m
    近井周
    <30;
    远井周
    [30, 80);
    超远井
    [80, 300]
    低夹角
    (<45°);
    高夹角
    (>75°)
    单靶点
    类型;
    多靶点
    类型
    大规模
    >2.0;
    中等规模[2.0,
    1.0);
    小规模
    <1.0
    直井(两层/多层); 水平井(两段/多段) 单目标;
    多目标
    直井;
    水平井
    无避水
    ≤30;
    高避水
    >30
    下载: 导出CSV

    表  3  塔河S80区主要靶向储集体目标划分类型

    Table  3.   Types of reservoir targets of S80 unit in Tahe Oilfield

    大类
    类别
    小类类别 属性特征 适合的
    酸压技术
    主应
    力方
    第1类,近井周-近主应力-无避水型-单目标洞穴型储集体 D<30 m,
    ANGLE<5°,
    H>30 m
    常规酸压工艺技术
    低非
    主应
    力方
    第2类,近/远井周-低非主应力-无避水型-单目标洞穴/暗河型储集体 D<80 m,
    ANGLE<45°,
    H>30 m
    缝内暂堵转向酸压工艺技术
    第3类,近/远井周-低非主应力+无避水型—多目标洞穴/暗河型储集体 D<80 m,
    ANGLE<45°,
    H>30 m, MUIT>1
    段间缝内暂堵转向酸压工艺技术
    高非
    主应力
    方位
    第4类,近井周-高非主应力-避水类型-单目标洞穴型储集体 D<30 m,
    ANGLE>75°,
    H<30 m
    脉冲波压裂技术(需控缝高)
    水平
    井目
    标体
    类型
    第5类,近井周-低角度斜交主应力-单目标地下洞穴型储集体 D<30 m,
    ANGLE<45°,
    H>30 m
    定向处理后缝内暂堵转向酸压
    第6类,近/远井周-低角度斜交主应力分段多目标体类型—洞穴型储集体 D<80 m,
    ANGLE<45°,
    H>30 m, MUIT>1
    定向处理后分段酸压工艺技术
    第7类,近/远井周-高角度斜交主应力方位分段多目标体片状风化壳+洞穴型储集体 D<80 m,
    ANGLE>75°,
    H>30 m, MUIT>1
    无工具分段酸压工艺技术
    注:D为距离;ANGLE为力面度;H为避水高度;MUIT为目标体
    下载: 导出CSV
  • [1] 耿宇迪, 张烨, 韩忠艳, 等. 塔河油田缝洞型碳酸盐岩油藏水平井酸压技术[J]. 新疆石油地质, 2011, 32(1): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201101030.htm

    Geng Y D, Zhang Y, Han Z Y, et al. Acid fracturing technique for fractured-vuggy carbonate reservoir by horizontal well process in tahe oil field[J]. Xinjiang Petroleum Geology, 2011, 32(1): 89-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201101030.htm
    [2] 王兴文, 郭建春, 赵金洲, 等. 碳酸盐岩储层酸化(酸压)技术与理论研究[J]. 特种油气藏, 2004, 11(4): 67-69. doi: 10.3969/j.issn.1006-6535.2004.04.018

    Wang X W, Guo J C, Zhao J Z, et al. Acidizing (acid fracturing) technique and theoretical study for carbonate reservoir[J]. Special Oil and Gas Reservoirs, 2004, 11(4): 67-69(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2004.04.018
    [3] 杨敏, 张烨. 缝洞型油藏超大规模酸压技术[J]. 地质科技情报, 2011, 30(3);89-92. doi: 10.3969/j.issn.1000-7849.2011.03.012

    Yang M, Zhang Y. Technique of extra-iarge scale acid fracturing in fracture-cave typed reservoir of Tahe Oilfield[J]. Geological Science and Technology Information, 2011, 30(3): 89-92(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.03.012
    [4] 杨乾龙, 黄禹忠, 刘平礼, 等. 碳酸盐岩超深水平井纤维分流暂堵复合酸压技术及其应用[J]. 油气地质与采收率, 2015, 22(2): 117-121. doi: 10.3969/j.issn.1009-9603.2015.02.022

    Yang Q L, Huang Y Z, Liu P L, et al. Research and application of composite acid fracturing technology with fiber diversion temporary plugging in ultra-deep carbonate horizontal wells[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(2): 117-121(in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2015.02.022
    [5] 王艳伟, 肖玉茹, 李青山. 超深井酸化压裂工艺技术在塔河油田的应用[J]. 新疆石油地质, 2000, 21(6);578-579.

    Wang Y W, Xiao Y R, Li Q S. Application of acid fracturing technology in ultradeep wells in Tahe Field[J]. Xinjiang Petroleum Geology, 2000, 21(6): 578-579(in Chinese with English abstract).
    [6] 宋志峰, 胡雅洁, 吴庭新, 等. 水平井无工具分段酸压方法在塔河油田的应用[J]. 新疆石油地质, 2016, 37(6): 738-740. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201606020.htm

    Song Z F, Hu Y J, Wu T X. Application of tool-free staged acid fracturing technology in horizontal wells, Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2016, 37(6): 738-740(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201606020.htm
    [7] 吴欣松, 魏建新, 昌建波, 等. 碳酸盐岩古岩溶储层预测的难点与对策[J]. 中国石油大学学报: 自然科学版, 2009, 33(6): 16-21. doi: 10.3321/j.issn:1673-5005.2009.06.004

    Wu X S, Wei J X, Chang J B, et al. Difficulty and countermeasures in carbonate paleokarst reser-voir prediction[J]. Journal of China University of Petroleum (edition of natural science), 2009, 33(6): 16-21(in Chinese with English abstract). doi: 10.3321/j.issn:1673-5005.2009.06.004
    [8] 王光付. 碳酸盐岩溶洞型储层综合识别及预测方法[J]. 石油学报, 2008, 29(1): 47-51. doi: 10.3321/j.issn:0253-2697.2008.01.008

    Wang G F. Integrative identification and prediction methods for carbonate rock cave reservoir[J]. Acta Petrolei Sinica, 2008, 29(1);47-51(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.01.008
    [9] Li Q, Sun J F, Wei H H, et al. Architectural features of fault-controlled karst reser reservoirs in the Tahe Oilfield[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106208. doi: 10.1016/j.petrol.2019.106208
    [10] 吴昌荣, 伍文明, 李海鹏, 等. 塔河油田四区鹰山组碳酸盐岩储层测井识别[J]. 新疆地质, 2007, 25(4): 405-408. doi: 10.3969/j.issn.1000-8845.2007.04.014

    Wu C R, Wu W M, Li H P, et al. Logging identification of carbonate reservoir of Yingshan Formation in Block 4 of Tahe Oilfield[J]. Xinjiang Geology, 2007, 25(4);405-408(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2007.04.014
    [11] Fei T, Luo X R, Zhang W. Integrated geological-geophysical characterizations of deeply buried fractured-vuggy carbonate reservoirs in Ordovician strata, Tarim Basin[J]. Marine and Petroleum Geology, 2019, 99: 292-309. doi: 10.1016/j.marpetgeo.2018.10.028
    [12] 张晓辉. 塔河油田碳酸盐岩岩溶测井响应特征[J]. 新疆地质, 2005, 23(4);406-409. doi: 10.3969/j.issn.1000-8845.2005.04.018

    Zhang X H. The characteristics of logging data in dissolved carbonate rocks in Tahe Oilfield[J]. Xinjiang Geology, 2005, 23(4): 406-409(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2005.04.018
    [13] 田东江, 罗志锋, 牛新年, 等. 复杂碳酸盐岩储层酸压沟通模式识别新方法与应用[J]. 钻采工艺, 2007, 40(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201703019.htm

    Tian D J, Luo Z F, Niu X N, et al. A new method recognizing fracture communication modes during acid frac in complicated carbonate reservoirs and its application[J]. Drilling & Production Thchnology, 2007, 40(3): 62-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201703019.htm
    [14] 罗鹏, 刘存革, 刘永立, 等. 塔河油田下寒武统肖尔布拉克组储层发育特征及控制因素探讨[J]. 地质科技情报, 2019, 38(1): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htm

    Luo P, Liu C G, Liu Y L, et al. Reservoir characteristics and controlling factors of cambrian Xiaoerbulake Formation in Tahe Oilfield[J]. Geological Science and Technology Information, 2019, 38(1): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htm
    [15] 肖子亢, 丁文龙, 曹自成, 等. 塔中南缘断裂坡折带成因演化及对奥陶系优质礁滩体的控制作用[J]. 地质科技情报, 2019, 38(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901005.htm

    Xiao Z K, D W L, Cao Z C, et al. Genetic evolution and controlling effect on ordovician reef with good property in the Tazhong Southern Faulted Slope Break[J]. Geological Science and Technology Information, 2019, 38(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901005.htm
    [16] 王新新, 朱永峰, 杨鹏飞, 等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报, 2019, 38(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htm

    Wang X X, Zhu Y F, Yang P F, et al. Lost circulation reason and solutions of permian igneous rock in Halahatang Oilfield A-B area, tarim basin[J]. Geological Science and Technology Information, 2019, 38(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htm
    [17] Wen Q Z, Chun L L, Ming Z, et al. Ant tracking for fracture interpretation in carbonate rock[J]. Advanced Materials Research, 2014, 3470: 1092-1095. http://www.scientific.net/AMR.1030-1032.1092
    [18] Jia L H, Zhi H K, Lu L Y. Automatic fracture identification using ant tracking in Tahe Oilfield[J]. Advanced Materials Research, 2014, 3246: 556-559. http://www.scientific.net/AMR.962-965.556
    [19] 巫波, 刘遥, 荣元帅, 等. 蚂蚁追踪技术在缝洞型油藏裂缝预测中的应用[J]. 断块油气田, 2014, 21(4): 453-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404012.htm

    Wu B, Liu Y, Rong Y S, et al. Application of ant tracking technology in fracture prediction of fracture-vuggy reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 453-457(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404012.htm
    [20] Jose Méndez, Qiang J, María González, et al. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China)[J]. Marine and Petroleum Geology, 2020, 112: 104104. doi: 10.1016/j.marpetgeo.2019.104104
    [21] 蔡成国, 顾汉明, 李宗杰, 等. 波阻抗反演方法在塔河碳酸盐岩储层预测中的应用[J]. 地质科技情报, 2009, 28(4): 91-95. doi: 10.3969/j.issn.1000-7849.2009.04.016

    Cai C G, Gu H M, Li Z J, et al. Application of wave impedance inversion methods in the carbonate reservoir prediction in Tahe Oilfield[J]. Geological Science and Technology Information, 2009, 28(4);91-95(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.04.016
    [22] John P, Sun S J. Comparison of spectral decomposition methods[J]. Eage, 2006, 24(3): 75-79.
    [23] 侯加根, 马晓强, 刘钰铭, 等. 缝洞型碳酸盐岩储层多类多尺度建模方法研究: 以塔河油田四区奥陶系油藏为例[J]. 地学前缘, 2012, 19(2): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202010.htm

    Hou J G, Ma X Q, Liu Y M, et al. Modelling of carbonate fracture-vuggy reservoir: a case study of ordovician reservoir of 4th block in Tahe Oilfield[J]. Earth Science Hrontiers, 2012, 19(2): 59-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202010.htm
    [24] 刘钰铭, 侯加根, 胡向阳, 等. 塔河油田古岩溶储集体三维建模[J]. 中国石油大学学报: 自然科学版, 2012, 36(2): 34-38. doi: 10.3969/j.issn.1673-5005.2012.02.006

    Liu Y M, Hou J G, Hu X Y, et al. 3D modeling of paleokarst reservoir in tahe oilfield[J]. Journal of China University of Petroleum, 2012, 36(2): 34-38(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.02.006
    [25] 鲁新便, 赵敏, 胡向阳, 等. 碳酸盐岩缝洞型油藏三维建模方法技术研究: 以塔河奥陶系缝洞型油藏为例[J]. 石油实验地质, 2012, 34(2): 193-198. doi: 10.3969/j.issn.1001-6112.2012.02.016

    Lu X B, Zhao M, Hu X Y, et al. Studies of 3D reservoir modeling: Taking ordovician carbonate fractured-vuggy reservoirs in Tahe Oilfield as an example[J]. Petroleum Geology & Experiment, 2012, 34(2): 193-1982(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2012.02.016
    [26] 胡向阳, 李阳, 权莲顺, 等. 碳酸盐岩缝洞型油藏三维地质建模方法: 以塔河油田四区奥陶系油藏为例[J]. 石油与天然气地质, 2013, 34(3): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303020.htm

    Hu X Y, Li Y, Quan L S, et al. Three-dimensional geological modeling of fractured-vuggy carbonate reservoirs: A case from the ordovician reservoirs in Tahe-Ⅳ Block, Tahe Oilfield. [J]. Oil & Gas Geology, 2013, 34(3): 383-387(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303020.htm
    [27] 李阳. 塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J]. 中国石油大学学报: 自然科学版, 2012, 36(1): 1-7. doi: 10.3969/j.issn.1673-5005.2012.01.001

    Li Y. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe Oilfield[J]. Journal of China University of Petroleum, 2012, 36(1): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.01.001
    [28] Oda M. A method for evaluating the representative elementary volume based on joint survey of rock masses[J]. Canadian Geotechnical Journal, 1988, 25(3): 440-447. doi: 10.1139/t88-049
    [29] Oda M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96-108. doi: 10.3208/sandf1972.22.4_96
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  637
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01

目录

    /

    返回文章
    返回