Classification and modeling of targeted fracture-cave bodies in acid fracturing
-
摘要: 塔河油田碳酸盐岩井周缝洞型储集体靶向酸压改造工艺针对性强,对于靶向目标精准定位与表征要求很高。围绕井周酸压增储提效,精准定量表征井筒附近储集体主应力方位、距离、规模、空间分布成为亟待解决的关键问题。从井孔与井周储层识别角度切入,采用一维资料-三维资料,多方法结合定量识别与刻画不同储层类型,在分类表征基础上,实现了模型的分类整合,构建了单元级次的多类型缝洞融合储层模型。然后,在单元级次模型基础上,创建了井周不同范围的可视化三维定量模型构建技术方法,建立了实际单井定量模型,并基于酸压靶向目标体三级八因素分类划分指标体系,确定了7种类型靶向目标体及适应的酸压技术方法。靶向酸压工艺矿场应用显示:靶向酸压井措施效果显著,同样区块范围井,比常规酸压方法平均增产倍比大,显著提高了酸压工艺的针对性和靶向性,有较好的推广应用前景。Abstract: targeted acid-fracturing technology is very demanding of the Localization and characterization of the reservoirs near wellbores.It is the key to accurately and quantitatively characterize the location, distance, scale and spatial distribution of the main stress of the reservoir near the wellbore.We realized the integration of the different types reservoir and builded multiple types fusion model of fracture-vug reservoir using five kinds of methods to depict different reservoir type with one-dimensional data to 3d data.Based on the unit level model, a visualized 3d quantitative model method for different ranges of Wells is established, and a three-level single well quantitative model is established.Based on the nine-factor of four-level classification index system of acidizing fracturing, 11 types of target reservoir and its adaptation technology methods were determined.Targeted acid-fracturing oil field application results: the effect is remarkable with higher production, more than 3.6 times than a conventional acid-fracturing in the same oil block.It significantly improves the pertinence and targeting of acid-fracturing technology.
-
Key words:
- 3D modeling /
- targeted acid fracturing /
- fractured vuggy reservoir /
- carbonate rock /
- Tahe Oilfield
-
表 1 塔河S80单元人工解释断层属性特征
Table 1. Fault attribute characteristics of S80 in Tahe Oilfield
方位 断层数/条 倾角/(°) 长度/m 平均值 范围 平均值 范围 北西向 15 80 72~86 590 180~1 400 北东向 19 82 74~85 760 140~2 600 东西向 9 79 70~83 120 110~220 总计 43 81 70~86 630 110~2 600 表 2 塔河靶向储集体目标划分指标体系
Table 2. Reservoir targets classification index system
距离与方位 空间展布 施工参数 与井筒距离/m 与主应力夹角/
(°)平面分布与厚度/m 储量/
104t形态结构(分层分段) 靶体数量 井型与海拔深度/m 避水高度/
m近井周
<30;
远井周
[30, 80);
超远井
[80, 300]低夹角
(<45°);
高夹角
(>75°)单靶点
类型;
多靶点
类型大规模
>2.0;
中等规模[2.0,
1.0);
小规模
<1.0直井(两层/多层); 水平井(两段/多段) 单目标;
多目标直井;
水平井无避水
≤30;
高避水
>30表 3 塔河S80区主要靶向储集体目标划分类型
Table 3. Types of reservoir targets of S80 unit in Tahe Oilfield
大类
类别小类类别 属性特征 适合的
酸压技术主应
力方
位第1类,近井周-近主应力-无避水型-单目标洞穴型储集体 D<30 m,
ANGLE<5°,
H>30 m常规酸压工艺技术 低非
主应
力方
位第2类,近/远井周-低非主应力-无避水型-单目标洞穴/暗河型储集体 D<80 m,
ANGLE<45°,
H>30 m缝内暂堵转向酸压工艺技术 第3类,近/远井周-低非主应力+无避水型—多目标洞穴/暗河型储集体 D<80 m,
ANGLE<45°,
H>30 m, MUIT>1段间缝内暂堵转向酸压工艺技术 高非
主应力
方位第4类,近井周-高非主应力-避水类型-单目标洞穴型储集体 D<30 m,
ANGLE>75°,
H<30 m脉冲波压裂技术(需控缝高) 水平
井目
标体
类型第5类,近井周-低角度斜交主应力-单目标地下洞穴型储集体 D<30 m,
ANGLE<45°,
H>30 m定向处理后缝内暂堵转向酸压 第6类,近/远井周-低角度斜交主应力分段多目标体类型—洞穴型储集体 D<80 m,
ANGLE<45°,
H>30 m, MUIT>1定向处理后分段酸压工艺技术 第7类,近/远井周-高角度斜交主应力方位分段多目标体片状风化壳+洞穴型储集体 D<80 m,
ANGLE>75°,
H>30 m, MUIT>1无工具分段酸压工艺技术 注:D为距离;ANGLE为力面度;H为避水高度;MUIT为目标体 -
[1] 耿宇迪, 张烨, 韩忠艳, 等. 塔河油田缝洞型碳酸盐岩油藏水平井酸压技术[J]. 新疆石油地质, 2011, 32(1): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201101030.htmGeng Y D, Zhang Y, Han Z Y, et al. Acid fracturing technique for fractured-vuggy carbonate reservoir by horizontal well process in tahe oil field[J]. Xinjiang Petroleum Geology, 2011, 32(1): 89-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201101030.htm [2] 王兴文, 郭建春, 赵金洲, 等. 碳酸盐岩储层酸化(酸压)技术与理论研究[J]. 特种油气藏, 2004, 11(4): 67-69. doi: 10.3969/j.issn.1006-6535.2004.04.018Wang X W, Guo J C, Zhao J Z, et al. Acidizing (acid fracturing) technique and theoretical study for carbonate reservoir[J]. Special Oil and Gas Reservoirs, 2004, 11(4): 67-69(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2004.04.018 [3] 杨敏, 张烨. 缝洞型油藏超大规模酸压技术[J]. 地质科技情报, 2011, 30(3);89-92. doi: 10.3969/j.issn.1000-7849.2011.03.012Yang M, Zhang Y. Technique of extra-iarge scale acid fracturing in fracture-cave typed reservoir of Tahe Oilfield[J]. Geological Science and Technology Information, 2011, 30(3): 89-92(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.03.012 [4] 杨乾龙, 黄禹忠, 刘平礼, 等. 碳酸盐岩超深水平井纤维分流暂堵复合酸压技术及其应用[J]. 油气地质与采收率, 2015, 22(2): 117-121. doi: 10.3969/j.issn.1009-9603.2015.02.022Yang Q L, Huang Y Z, Liu P L, et al. Research and application of composite acid fracturing technology with fiber diversion temporary plugging in ultra-deep carbonate horizontal wells[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(2): 117-121(in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2015.02.022 [5] 王艳伟, 肖玉茹, 李青山. 超深井酸化压裂工艺技术在塔河油田的应用[J]. 新疆石油地质, 2000, 21(6);578-579.Wang Y W, Xiao Y R, Li Q S. Application of acid fracturing technology in ultradeep wells in Tahe Field[J]. Xinjiang Petroleum Geology, 2000, 21(6): 578-579(in Chinese with English abstract). [6] 宋志峰, 胡雅洁, 吴庭新, 等. 水平井无工具分段酸压方法在塔河油田的应用[J]. 新疆石油地质, 2016, 37(6): 738-740. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201606020.htmSong Z F, Hu Y J, Wu T X. Application of tool-free staged acid fracturing technology in horizontal wells, Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2016, 37(6): 738-740(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201606020.htm [7] 吴欣松, 魏建新, 昌建波, 等. 碳酸盐岩古岩溶储层预测的难点与对策[J]. 中国石油大学学报: 自然科学版, 2009, 33(6): 16-21. doi: 10.3321/j.issn:1673-5005.2009.06.004Wu X S, Wei J X, Chang J B, et al. Difficulty and countermeasures in carbonate paleokarst reser-voir prediction[J]. Journal of China University of Petroleum (edition of natural science), 2009, 33(6): 16-21(in Chinese with English abstract). doi: 10.3321/j.issn:1673-5005.2009.06.004 [8] 王光付. 碳酸盐岩溶洞型储层综合识别及预测方法[J]. 石油学报, 2008, 29(1): 47-51. doi: 10.3321/j.issn:0253-2697.2008.01.008Wang G F. Integrative identification and prediction methods for carbonate rock cave reservoir[J]. Acta Petrolei Sinica, 2008, 29(1);47-51(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.01.008 [9] Li Q, Sun J F, Wei H H, et al. Architectural features of fault-controlled karst reser reservoirs in the Tahe Oilfield[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106208. doi: 10.1016/j.petrol.2019.106208 [10] 吴昌荣, 伍文明, 李海鹏, 等. 塔河油田四区鹰山组碳酸盐岩储层测井识别[J]. 新疆地质, 2007, 25(4): 405-408. doi: 10.3969/j.issn.1000-8845.2007.04.014Wu C R, Wu W M, Li H P, et al. Logging identification of carbonate reservoir of Yingshan Formation in Block 4 of Tahe Oilfield[J]. Xinjiang Geology, 2007, 25(4);405-408(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2007.04.014 [11] Fei T, Luo X R, Zhang W. Integrated geological-geophysical characterizations of deeply buried fractured-vuggy carbonate reservoirs in Ordovician strata, Tarim Basin[J]. Marine and Petroleum Geology, 2019, 99: 292-309. doi: 10.1016/j.marpetgeo.2018.10.028 [12] 张晓辉. 塔河油田碳酸盐岩岩溶测井响应特征[J]. 新疆地质, 2005, 23(4);406-409. doi: 10.3969/j.issn.1000-8845.2005.04.018Zhang X H. The characteristics of logging data in dissolved carbonate rocks in Tahe Oilfield[J]. Xinjiang Geology, 2005, 23(4): 406-409(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2005.04.018 [13] 田东江, 罗志锋, 牛新年, 等. 复杂碳酸盐岩储层酸压沟通模式识别新方法与应用[J]. 钻采工艺, 2007, 40(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201703019.htmTian D J, Luo Z F, Niu X N, et al. A new method recognizing fracture communication modes during acid frac in complicated carbonate reservoirs and its application[J]. Drilling & Production Thchnology, 2007, 40(3): 62-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201703019.htm [14] 罗鹏, 刘存革, 刘永立, 等. 塔河油田下寒武统肖尔布拉克组储层发育特征及控制因素探讨[J]. 地质科技情报, 2019, 38(1): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htmLuo P, Liu C G, Liu Y L, et al. Reservoir characteristics and controlling factors of cambrian Xiaoerbulake Formation in Tahe Oilfield[J]. Geological Science and Technology Information, 2019, 38(1): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htm [15] 肖子亢, 丁文龙, 曹自成, 等. 塔中南缘断裂坡折带成因演化及对奥陶系优质礁滩体的控制作用[J]. 地质科技情报, 2019, 38(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901005.htmXiao Z K, D W L, Cao Z C, et al. Genetic evolution and controlling effect on ordovician reef with good property in the Tazhong Southern Faulted Slope Break[J]. Geological Science and Technology Information, 2019, 38(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901005.htm [16] 王新新, 朱永峰, 杨鹏飞, 等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报, 2019, 38(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htmWang X X, Zhu Y F, Yang P F, et al. Lost circulation reason and solutions of permian igneous rock in Halahatang Oilfield A-B area, tarim basin[J]. Geological Science and Technology Information, 2019, 38(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htm [17] Wen Q Z, Chun L L, Ming Z, et al. Ant tracking for fracture interpretation in carbonate rock[J]. Advanced Materials Research, 2014, 3470: 1092-1095. http://www.scientific.net/AMR.1030-1032.1092 [18] Jia L H, Zhi H K, Lu L Y. Automatic fracture identification using ant tracking in Tahe Oilfield[J]. Advanced Materials Research, 2014, 3246: 556-559. http://www.scientific.net/AMR.962-965.556 [19] 巫波, 刘遥, 荣元帅, 等. 蚂蚁追踪技术在缝洞型油藏裂缝预测中的应用[J]. 断块油气田, 2014, 21(4): 453-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404012.htmWu B, Liu Y, Rong Y S, et al. Application of ant tracking technology in fracture prediction of fracture-vuggy reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 453-457(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404012.htm [20] Jose Méndez, Qiang J, María González, et al. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China)[J]. Marine and Petroleum Geology, 2020, 112: 104104. doi: 10.1016/j.marpetgeo.2019.104104 [21] 蔡成国, 顾汉明, 李宗杰, 等. 波阻抗反演方法在塔河碳酸盐岩储层预测中的应用[J]. 地质科技情报, 2009, 28(4): 91-95. doi: 10.3969/j.issn.1000-7849.2009.04.016Cai C G, Gu H M, Li Z J, et al. Application of wave impedance inversion methods in the carbonate reservoir prediction in Tahe Oilfield[J]. Geological Science and Technology Information, 2009, 28(4);91-95(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.04.016 [22] John P, Sun S J. Comparison of spectral decomposition methods[J]. Eage, 2006, 24(3): 75-79. [23] 侯加根, 马晓强, 刘钰铭, 等. 缝洞型碳酸盐岩储层多类多尺度建模方法研究: 以塔河油田四区奥陶系油藏为例[J]. 地学前缘, 2012, 19(2): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202010.htmHou J G, Ma X Q, Liu Y M, et al. Modelling of carbonate fracture-vuggy reservoir: a case study of ordovician reservoir of 4th block in Tahe Oilfield[J]. Earth Science Hrontiers, 2012, 19(2): 59-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202010.htm [24] 刘钰铭, 侯加根, 胡向阳, 等. 塔河油田古岩溶储集体三维建模[J]. 中国石油大学学报: 自然科学版, 2012, 36(2): 34-38. doi: 10.3969/j.issn.1673-5005.2012.02.006Liu Y M, Hou J G, Hu X Y, et al. 3D modeling of paleokarst reservoir in tahe oilfield[J]. Journal of China University of Petroleum, 2012, 36(2): 34-38(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.02.006 [25] 鲁新便, 赵敏, 胡向阳, 等. 碳酸盐岩缝洞型油藏三维建模方法技术研究: 以塔河奥陶系缝洞型油藏为例[J]. 石油实验地质, 2012, 34(2): 193-198. doi: 10.3969/j.issn.1001-6112.2012.02.016Lu X B, Zhao M, Hu X Y, et al. Studies of 3D reservoir modeling: Taking ordovician carbonate fractured-vuggy reservoirs in Tahe Oilfield as an example[J]. Petroleum Geology & Experiment, 2012, 34(2): 193-1982(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2012.02.016 [26] 胡向阳, 李阳, 权莲顺, 等. 碳酸盐岩缝洞型油藏三维地质建模方法: 以塔河油田四区奥陶系油藏为例[J]. 石油与天然气地质, 2013, 34(3): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303020.htmHu X Y, Li Y, Quan L S, et al. Three-dimensional geological modeling of fractured-vuggy carbonate reservoirs: A case from the ordovician reservoirs in Tahe-Ⅳ Block, Tahe Oilfield. [J]. Oil & Gas Geology, 2013, 34(3): 383-387(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303020.htm [27] 李阳. 塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J]. 中国石油大学学报: 自然科学版, 2012, 36(1): 1-7. doi: 10.3969/j.issn.1673-5005.2012.01.001Li Y. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe Oilfield[J]. Journal of China University of Petroleum, 2012, 36(1): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.01.001 [28] Oda M. A method for evaluating the representative elementary volume based on joint survey of rock masses[J]. Canadian Geotechnical Journal, 1988, 25(3): 440-447. doi: 10.1139/t88-049 [29] Oda M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96-108. doi: 10.3208/sandf1972.22.4_96