Development characteristics and influence degree zoning of carbonate rock collapse in Nanzhang and Baokang Counties
-
摘要: 近年来,南漳保康两县碳酸盐岩分布区崩塌频发,造成严重人员伤亡与经济损失。基于两县1:5万地灾详查的32处碳酸盐岩崩塌资料,从时空分布、规模特征、发育层位、构造部位及破坏模式等角度分析了崩塌发育特征,据此将其概括为5种类型。然后,以相关影响程度分区理论为指导,采用软件将两县碳酸盐岩分布区按崩塌影响程度分为直接影响区与非直接影响区,并针对各分区特征提出了相应的崩塌防治建议。最后,选取保康县汤池峡崩塌为典型实例,基于崩塌发育特征提出了针对性较强的防治措施。该成果可系统深入地揭示同类型崩塌或隐患点的发育特征并指导其早期识别与防范工作,对提高崩塌防灾减灾工作认识具有现实意义。Abstract: In recent years, the carbonate rock distribution areas in Nanzhang and Baokang Counties, Hubei Province have collapsed frequently, causing serious casualties and economic losses. Based on the data of 32 carbonate rock collapse obtained from the detailed investigations of 1:50, 000 geological disasters in two counties, this paper summarizes the development characteristics of the collapses from the perspectives of time and space distribution, scale characteristics, development stratigraphy and failure mode. According to the statistical result, the paper summarizes the collapses into five types. Then, using partitioning software and guided by the theory of the impact degree partition, the paper divides the carbonate rock distribution areas into directly affected areas and non-directly affected areas according to the scope of impact and the degree of damage. Subsequently, corresponding collapse prevention measures are proposed for different affected areas. Finally, the Tangchi gorge collapse in Baokang County is selected as a typical example for the analysis of the development characteristics of collapse, a more targeted prevention measures are proposed. The research result in this paper can systematically reveal the development characteristics of the same type of collapse or potential collapse points, and then guide their early identification and prevention. Thus, this has practical significance for raising awareness of disaster reduction and prevention.
-
图 1 碳酸盐岩岩组分布、崩塌位置与地质构造相对位置关系
a.南漳县:F1.南漳断裂;F2.田家沟断裂;F3.塘儿河-崔家冲断裂;F4.店子垭-八渡河断裂;F5.陡山峰断裂;F6.七里山断裂;F7.李家沟断裂;F8.金家垭断裂;F9.郭家湾断裂;F10.谢家垭断裂;F11.袁家垭断裂;F12.柿子园断裂;F13.冷水河断裂;F14.转转岩-上泉坪断裂;F15.东坑断裂;F16.老湾断裂;F17.何家湾断裂;F18.马嘶沟断裂;①胡家崖倒转复式背斜;②团堡寨倒转复式背斜;③仙女湾-大岭倒转背斜;④寺坪-牛头山倒转复式背斜;⑤朱家裕倒转背斜;⑥李家沟倒转向斜;⑦洞河倒转背斜;⑧回鱼纲背斜;⑨杨家山向斜;⑩皮家寨向斜;B11槐树垭倒转向斜;B12金竹园倒转背斜;B13神仙坪倒转背斜;B14施家坪向斜;B15冲子倒转向斜;B16袁家庄子向斜;B17响水寺向斜;B18肖家埝向斜;B19天坑垭-刘家院子向斜;B20白果树湾-关家砦向斜;B21孙家湾-谢家川向斜;B22菊家湾背斜;B23老林沟背斜;B24周家岭背斜;B25摩天垭背斜b.保康县:F2.马家寨断裂;F3.羊胡山断裂;F4.新华断裂;F5.板庙断裂;F6.青峰断裂;F7.黑虎跑断裂;F8.破山垭断裂;F9.雷凸寨断裂;F10.阳日断裂;F11.塘儿山断裂;F12.龙巴满断裂;F13.凉峰垭断裂;F14.簸裕山断裂;F15.凉风垭断裂;①梅花寨背斜;②寺坪-牛头山倒转复式向斜;③张家凹向斜;④马湾向斜;⑤西坪背斜;⑥天池垭背斜;⑦赵家山背斜;⑧五道峡背斜;⑨汇龙湾倒转复式向斜
Figure 1. Relative positional relationship of carbonate rock group distribution, collapse location and geotectonics
表 1 各岩组赋存地层及面积统计表
Table 1. Statistics of occurrence strata and distribution area of carbonate formation
地层代号 分布面积/km2 南漳县 保康县 Ⅰ1类 Ⅰ2类 Ⅰ1类 Ⅰ2类 Ⅰ1类 Ⅰ2类 T1-2j P2l-d 879.12 42.4 84.46 267.32 T1d P1q 455.03 84.49 193.39 123.28 P1m O2-3b 113.25 24.48 93.48 188.53 C2h ∈2q 8.12 20.33 1.87 164.86 O1n-g ∈1t-sl 44.72 50.39 178.35 173.32 ∈2O1l - 22.14 - 242.11 - ∈1n+s - 18.63 - 131.03 - Z2∈1d - 108.83 - 118.44 - Z1d - 0.44 - 24.26 - 注:T1-2j.嘉陵江组;T1d.大冶组;P1m.茅口组;C2h.黄龙组;O1n-g.南津关组-牯牛潭组;∈2O1l.娄山关组;∈1n+s.牛蹄塘组+石牌组;Z2∈1d.灯影组;Z1d.陡山沱组;P2l-d.龙潭组-大隆组;P1q.栖霞组;O2-3b.宝塔组;∈2q.覃家庙组;∈1t-sl.天河板组-石龙洞组 表 2 两县碳酸盐岩崩塌典型类型总结
Table 2. Summary of carbonate rock collapse typical types in two counties
类型划分 诱发因素 发育高度/m 破坏模式 基本特征 典型实例 降雨诱发型极陡坡高位崩塌 降雨入渗 >50 倾倒、滑移、坠落 多发育于临空条件好的陡崖段,坡型上陡下缓;岩体被结构面切割成块状,后缘多发育陡倾裂缝;失稳破坏受浸泡软化与水压力作用控制 汤池峡温泉崩塌 降雨诱发型中位滑错式崩塌 降雨入渗 15~50 滑移、错断 发育于坡度大于50°的斜坡地带;受降雨与自重双重作用影响,岩体多顺层面、裂隙面向临空方向滑移、错断,最终失稳崩落 阴坡崩塌封银岩崩塌 开挖卸荷型中位倾倒式崩塌 开挖切坡 15~50 倾倒、坠落 发育于开挖切坡形成的直立陡崖或倒崖段;岩体多被陡倾层面或卸荷裂隙切割成直立板柱状,在自重弯矩长期作用下,岩柱向外倾倒坠落 剪子沟崩塌S251崩塌1 开挖卸荷型中低位拉裂式崩塌 开挖边坡 < 50 拉裂、坠落 发育于开挖切坡形成的陡坡地段,裂隙将岩体切割成块状;下部软弱层卸荷剥落形成岩腔,使岩块沿裂隙拉断或剪断后失稳坠落 配矿场崩塌沙石嘴崩塌 风化溶蚀型中低位坠落式崩塌 风化溶蚀 < 50 坠落 发育于受长期溶蚀作用而溶蚀孔洞、裂隙发育的斜坡段;各层溶蚀、剥落程度不同,主控裂隙被溶蚀贯通后,岩块与母岩脱离并失稳坠落 罗家岩崩塌朱九路崩塌 表 3 各评价指标量化分级标准及分值表
Table 3. Quantitative classification criteria and score for each evaluation index
单项分值 1(非直接影响区) 2(直接影响区) 地质环境条件 水系分布(C1) 与主要水系距离>200 m 与主要水系距离≤200 m 岩组地层(C2) 坚硬厚层状灰岩、白云岩岩组(Ⅰ1类) 较坚硬-较软弱中-厚层状灰岩、白云岩组夹软质页岩组(Ⅰ2类) 地质构造(C3) 与主要构造线距离>500 m 与主要构造线距离≤500 m 地形地貌(C4) 中低山、丘陵区,地形起伏小,相对高差小,坡度缓 中高山区,地形起伏较大,相对高差大,坡度陡 人类工程活动 居民点分布(C5) 与居民点和构筑物距离>200 m 与居民点和构筑物距离≤200 m 各级道路布设(C6) 距离道路>200 m 距离道路≤200 m 崩塌点 崩塌点分布(C7) 0(无崩塌点) ≥1个/km2 表 4 南漳县直接影响区各亚区特征
Table 4. Characteristics of subregions in the direct impact area of Nanzhang County
代号 分布位置 面积/km2 百分比/% Ⅰ-1 城关镇至李庙镇沿线 33.96 9.33 Ⅰ-2 李庙镇南部 26.09 7.17 Ⅰ-3 城关镇西侧与薛坪镇北部 64.28 17.65 Ⅰ-4 薛坪镇西北部与长坪镇南部 100.41 27.57 Ⅰ-5 板桥镇 53.53 14.70 Ⅰ-6 肖堰镇东部 36.18 9.93 Ⅰ-7 武安镇与东巩镇交界处 49.73 13.65 表 5 保康县直接影响区各亚区特征
Table 5. Characteristic of subregions in the direct impact area of Baokang County
代号 分布位置 面积/km2 百分比/% Ⅰ-1 马桥镇 247.81 30.40 Ⅰ-2 城关镇南部、后坪镇北部及黄堡镇中部 296.26 36.34 Ⅰ-3 龙坪镇、两峪乡和后坪镇南部 198.42 24.34 Ⅰ-4 歇马镇南部 56.52 6.93 Ⅰ-5 两峪乡与店垭镇交界处 16.21 1.99 -
[1] 张路青, 杨志法, 张英俊.公路沿线遭遇滚石的风险分析:方法研究[J].岩石力学与工程学报, 2005, 24(增刊2):5543-5548. http://qikan.cqvip.com/Qikan/Article/Detail?id=21394065 [2] 杜蜀宾.西南矿区山体崩塌成因机制分析及防治对策[J].地球科学与环境学报, 2004, 26(1):89-92. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb200401020 [3] Jarman D.Large rock slope failures in the Highlands of Scoland:Characterisation, causes and spatial distribution[J].Engineering Geology, 2006, 83(1):161-182. http://www.sciencedirect.com/science/article/pii/S0013795205002280 [4] Wei Lunwei, Chen Hongey, Lee Ching-Fang, et al.The mechanism of rockfall disaster:A case study from Badouzih, Keelung, in northern Taiwan[J].Engineering Geology, 2014, 183(9):116-126. http://www.sciencedirect.com/science/article/pii/S0013795214002634 [5] 王霞.青海省玉树州典型崩塌变形破坏模式与过程分析[D].西安: 长安大学, 2016. CNKI:CDMD:2.1016.920899 [6] 胡玉凤, 陈筠, 谢兴能, 等.贵州崩塌发育特征分析[J].贵州大学学报:自然科学版, 2014, 31(2):40-44, 48. doi: 10.3969/j.issn.1000-5269.2014.02.011 [7] 许强, 黄润秋.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报, 2009, 17(4):433-444. [8] 杨春峰, 王合, 杨敏.老鹰岩崩塌危岩体稳定性分析[J].沈阳大学学报:自然科学版, 2018, 30(5):390-394. http://www.cnki.com.cn/Article/CJFDTotal-SYDA201805010.htm [9] 刘传正.重庆武隆鸡尾山危岩体形成与崩塌成因分析[J].工程地质学报, 2010, 18(3):297-304. http://www.cqvip.com/Main/Detail.aspx?id=34387566 [10] 董秀军, 裴向军, 黄润秋.贵州凯里龙场镇山体崩塌基本特征与成因分析[J].中国地质灾害与防治学报, 2015, 26(3):3-9. doi: 10.16031/j.cnki.issn.1003-8035.2015.03.02 [11] 周心经, 郭麒麟.巴东作揖沱崩滑体基本特征及成因机制分析[J].地质科技情报, 2001, 20(1):87-90. doi: 10.3969/j.issn.1000-7849.2001.01.019 [12] 苏厅云.大同市黄土崩塌(滑坡)地质灾害发育特征及防治措施[J].地质灾害与环境保护, 2018, 29(3):22-26. doi: 10.3969/j.issn.1006-4362.2018.03.005 [13] 刘向御.山西典型黄土崩塌破坏模式及其早期辨识[J].长江科学院院报, 2019, 36(11):69-75. http://www.cnki.com.cn/Article/CJFDTotal-CJKB201911017.htm [14] 庄建琦, 崔鹏, 葛永刚, 等.5.12汶川地震崩塌滑坡分布特征及影响因子评价:以都江堰至汶川公路沿线为例[J].地质科技情报, 2009, 28(2):16-22. doi: 10.3969/j.issn.1000-7849.2009.02.004 [15] 张路青, 杨志法.公路沿线遭遇滚石的风险分析:案例研究[J].岩石力学与工程学报, 2004, 23(21):3700-3708. [16] 李漪, 晏鄂川, 胡显明, 等.南门湾滑移式危岩体风险评价研究[J].长江科学院院报, 2011, 28(5):14-17. doi: 10.3969/j.issn.1001-5485.2011.05.004 [17] 许强, 陈伟.单体危岩崩塌灾害风险评价方法:以四川省丹巴县危岩崩塌体为例[J].地质通报, 2009, 28(8):1039-1046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200908005 [18] 韩振华, 陈鑫, 王学良, 等.四川罗家青杠岭崩塌风险的定量评价研究[J].工程地质学报, 2017, 25(2):520-530. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201702032.htm [19] 曹洋兵, 晏鄂川, 龙黎红, 等.崩滑灾害位移曲线典型类型及其形成机制[J].地质科技情报, 2014, 33(5):176-180. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201405026.htm [20] 郭晨, 许强, 魏勇, 等.陕西泾阳南塬多序次黄土滑坡演化特征及成灾模式[J].地质科技情报, 2019, 38(5):204-211. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZKQ201905022 [21] Valagussa A, Frattini P, Crosta G B.Earthquake-induced rockfall hazard zoning[J].Engineering Geology, 2014, 182(19):213-225. http://cn.bing.com/academic/profile?id=59ca09a9f494c303b73293f2c5c687aa&encoded=0&v=paper_preview&mkt=zh-cn [22] Ferrari F, Giacomini A, Thoeni K, et al.Qualitative evolving rockfall hazard assessment for highwalls[J].International Journal of Rock Mechanics & Mining Sciences, 2017, 98(7):88-101. http://cn.bing.com/academic/profile?id=515b7478254870e521016bbbb3c20c0a&encoded=0&v=paper_preview&mkt=zh-cn [23] Li Haibo, Li Xiaowen, Li Wanzhou, et al.Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J].Engineering Geology, 2019, 248(8):1-13. http://cn.bing.com/academic/profile?id=0cb7ef2f20a3325a4c3dacecf2c86cce&encoded=0&v=paper_preview&mkt=zh-cn [24] 苏凤环, 崔鹏, 韩用顺, 等.基于遥感技术的都汶公路地震次生山地灾害分布规律分析[J].地质科技情报, 2009, 28(2):29-32. doi: 10.3969/j.issn.1000-7849.2009.02.006 [25] Lan Hengxing, Martin C D, Zhou Chenghu, et al.Rockfall hazard analysis using LiDAR and spatial modeling[J].Geomorphology, 2010, 118(1):213-223. http://cn.bing.com/academic/profile?id=ee133d237c4645c2766fb37af469774d&encoded=0&v=paper_preview&mkt=zh-cn [26] Fanos A M, Pradhan B.A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS[J].Catena, 2019, 172(6):435-450. http://cn.bing.com/academic/profile?id=0a7c40930f1770e24e785c8e913e5f6e&encoded=0&v=paper_preview&mkt=zh-cn