Flow calculation method and engineering application of non-standard triangle weir measurement method for rich-water faults
-
摘要: 公路、铁路、水利水电、矿山等隧道工程建设和运营过程中,不可避免地会遭遇塌方、突涌水等地质灾害问题,围岩失稳破坏和渗流突变是发生突水的直接原因。为查明龙南隧道F8富水断层洞身范围涌水来源及其涌水量的大小,采用非标准三角堰测法结合矩形堰测法现场监测F8断层地表上、下游流量。本研究提出非标准三角堰测法的基本概念,并根据标准三角堰测法流量公式,结合流量的等效原理,推导出了非标准三角堰测法流量公式。通过理论与实测数据进行比较,证明了本公式的合理性。研究结果表明,非标准三角堰测法流量公式的推导为现场流量实测提供了方便,克服了标准三角堰测法公式适用范围不足的缺点,为分析断层破碎带洞身围岩范围内涌水量大小提供了可靠依据。Abstract: In the construction and operation of tunnels such as highways, railways, water conservancy and hydropower, and mines, it is inevitable to encounter geological disasters such as collapse and water inrush. The instability and destruction of surrounding rocks and seepage sudden change are the direct causes of water inrush. To find out the source of water inrush and the amount of water inrush in the area of F8 rich-water faults of Longnan tunnel, the non-standard triangular weir measuring method and the rectangular weir measuring method are used to monitor the flow of F8 surface upstream and downstream. In this paper, the basic concept of non-standard triangular weir method is put forward, and according to the flow formula of standard triangular weir measuring method and the principle of flow equivalence, the flow formula of non-standard triangular weir measuring method is derived. The rationality of the formula is proved by comparing the theory with the measured data. The results show that the derivation of the flow formula of the non-standard triangular weir measurement method provides convenience for the field flow measurement, overcomes the shortcomings of the application scope of the standard triangular weir measurement method formula, and provides a reliable basis for the analysis of the water inflow in the surrounding rock of the tunnel body in the fault fracture zone.
-
表 1 F8断层上游矩形堰测法流量监测结果
Table 1. Flow monitoring results of F8 fault upstream rectangular weir method
监测时间 天气 h/cm B/cm Q/(L·s-1) Q/(m3·h-1) 2019/03/13, 17:05 晴 6.53 102.00 30.64 110.29 2019/03/14, 17:00 雨转阴 6.63 102.00 31.34 112.83 2019/03/15, 17:10 晴 6.60 102.00 31.13 112.07 2019/03/16, 17:30 雨 7.03 102.00 34.22 123.20 2019/03/17, 17:50 雨转阴 6.77 102.00 32.34 116.43 2019/03/18, 18:00 阴 6.50 102.00 30.43 109.53 2019/03/19, 18:05 阴 6.47 102.00 30.22 108.78 2019/03/20, 18:30 阴 6.57 102.00 30.92 111.31 2019/03/21, 18:32 阴 6.47 102.00 30.22 108.78 2019/03/22, 18:20 雨转阴 6.70 102.00 31.84 114.63 2019/03/23, 18:25 雨转阴 6.90 102.00 33.28 119.80 2019/03/24, 18:20 阴 6.93 102.00 33.49 120.58 2019/03/25, 18:10 阴 6.83 102.00 32.77 117.98 2019/03/26, 18:20 雨转阴 6.80 102.00 32.56 117.20 2019/03/27, 18:15 阴 6.97 102.00 33.78 121.63 平均值 6.71 31.95 115.00 注:矩形堰测法适用条件为流量Q≥30 L/s;h为水深; B为堰口宽,下同 表 2 F8断层下游非标准三角堰测法流量监测结果
Table 2. Flow monitoring results of non-standard triangular weir measurement method at the downstream of F8 fault
监测时间 天气 h/cm C Q/(L·s-1) Q/(m3·h-1) 2019/03/13, 17:30 晴 13.13 0.014 13.04 46.94 2019/03/14, 17:25 雨转阴 13.40 0.014 13.72 49.39 2019/03/15, 17:28 晴 13.33 0.014 13.54 48.74 2019/03/16, 17:55 雨 16.33 0.014 22.49 80.97 2019/03/17, 18:15 雨转阴 15.17 0.014 18.71 67.35 2019/03/18, 18:30 阴 13.90 0.014 15.03 54.12 2019/03/19, 18:35 阴 13.40 0.014 13.72 49.39 2019/03/20, 18:55 阴 13.47 0.014 13.90 50.03 2019/03/21, 18:53 阴 13.27 0.014 13.39 48.20 2019/03/22, 18:48 雨转阴 14.60 0.014 17.00 61.20 2019/03/23, 18:50 雨转阴 14.33 0.014 16.22 58.41 2019/03/24, 18:45 阴 15.33 0.014 19.20 69.14 2019/03/25, 18:35 阴 14.90 0.014 17.89 64.39 2019/03/26, 18:47 雨转阴 15.73 0.014 20.48 73.74 2019/03/27, 18:42 阴 15.67 0.014 20.29 73.03 平均值 14.40 16.57 59.67 注:1.非标准三角堰测法适用条件为1 L/s<Q<30 L/s;2.测得非标准三角堰顶角θ=108° 表 3 F8断层下游标准三角堰测法流量计算结果
Table 3. Flow calculation results of F8 fault downstream standard triangular weir measurement method
监测时间 天气 h/cm C Q/(L·s-1) Q/(m3·h-1) 2019/03/13, 17:30 晴 13.13 0.014 8.75 31.48 2019/03/14, 17:25 雨转阴 13.40 0.014 9.21 33.13 2019/03/15, 17:28 晴 13.33 0.014 9.08 32.70 2019/03/16, 17:55 雨 16.33 0.014 15.09 54.31 2019/03/17, 18:15 雨转阴 15.17 0.014 12.55 45.17 2019/03/18, 18:30 阴 13.90 0.014 15.03 54.12 2019/03/19, 18:35 阴 13.40 0.014 9.20 33.13 2019/03/20, 18:55 阴 13.47 0.014 9.32 33.56 2019/03/21, 18:53 阴 13.27 0.014 8.98 32.33 2019/03/22, 18:48 雨转阴 14.60 0.014 11.40 41.05 2019/03/23, 18:50 雨转阴 14.33 0.014 10.88 39.18 2019/03/24, 18:45 阴 15.33 0.014 12.88 46.38 2019/03/25, 18:35 阴 14.90 0.014 12.00 43.19 2019/03/26, 18:47 雨转阴 15.73 0.014 13.74 49.46 2019/03/27, 18:42 阴 15.67 0.014 13.61 48.99 平均值 14.40 11.45 41.21 注:标准三角堰测法适用条件为1 L/s<Q<30 L/s 表 4 F8断层下游普通堰测法流量理论计算值
Table 4. Theoretical calculation value of flow measured by ordinary weir downstream of F8 fault
h′/cm S/cm2 L/cm t/s υ/(cm·s-1) Q/(L·s-1) 13.13 237.40 120.00 2.22 54.05 12.83 13.40 247.14 120.00 2.15 55.81 13.79 13.33 244.69 120.00 2.12 56.60 13.85 16.33 367.19 120.00 2.11 56.87 20.88 15.17 316.61 120.00 2.09 57.42 18.18 13.90 265.93 120.00 2.02 59.41 15.80 13.40 247.14 120.00 2.15 55.81 13.79 13.47 249.61 120.00 2.09 57.42 14.33 13.27 242.25 120.00 2.12 56.60 13.71 14.60 293.39 120.00 1.98 60.61 17.78 14.33 282.77 120.00 2.04 58.82 16.63 15.33 323.60 120.00 2.01 59.70 19.32 14.90 305.57 120.00 1.97 60.91 18.61 15.73 340.71 120.00 2.05 58.54 19.94 15.67 337.83 120.00 1.99 60.30 20.37 平均值 286.79 2.07 57.92 16.66 注:断面面积$S=h^{\prime} \times \operatorname{tg}\left(\frac{\theta}{2}\right)$, 其中顶角θ=108°,h′为水深;L为堰长;t为时间;v为平均流速 -
[1] 张龙生, 翁贤杰.富水软弱围岩隧道塌方机理及治理技术研究[J].中外公路, 2017, 37(1):173-179. http://www.cqvip.com/QK/93208A/20171/671404422.html [2] 宋法亮, 赵海雷.高黎贡山隧道复杂地质条件下敞开式TBM施工关键技术研究[J].隧道建设, 2017, 37(增刊1):128-133. http://d.wanfangdata.com.cn/Periodical/sdjs2017z1021 [3] 刘斌.基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究[D].济南: 山东大学, 2010. [4] 李贵仁, 赵珍, 折书群, 等.复式推覆体内矿坑涌水量预测的地下水数值模拟[J].地质科技情报, 2019, 38(6):212-220. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201906026.htm [5] 宋瑞刚, 张顶立, 文明.穿越断层破碎带深埋隧道围岩失稳的突变理论分析[J].土木工程学报, 2015, 48(增刊1):289-292. http://www.cqvip.com/QK/90342X/2015S1/84777167504849538349485257.html [6] 杨天鸿, 陈仕阔, 朱万成, 等.矿井岩体破坏突水机制及非线性渗流模型初探[J].岩石力学与工程学报, 2008, 27(7):1411-1416. http://www.cqvip.com/QK/96026X/20087/29108842.html [7] 孙明贵, 李天珍, 黄先伍, 等.基于层状岩体渗流失稳条件的煤矿突水机理[J].中国矿业大学学报, 2005, 34(3):284-288, 293. http://d.wanfangdata.com.cn/Periodical/zgkydxxb200503005 [8] 黄伟, 项伟, 崔德山, 等.连续介质理论与块体理论在地下水封油库围岩稳定性分析中的应用:以烟台某地下水封油库为例[J].地质科技情报, 2016, 35(1):166-171. http://www.cqvip.com/QK/93477A/201601/667744856.html [9] 陈强, 陈炜韬.厦门海底隧道类土质围岩水土作用研究[J].岩土力学, 2008, 29(10):2623-2626. http://d.wanfangdata.com.cn/Periodical/ytlx200810005 [10] 黄涛.渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[J].岩石力学与工程学报, 1999, 18(2):239-239. http://www.cnki.com.cn/Article/CJFDTotal-YSLX902.028.htm [11] 成建梅, 罗伟, 徐子东, 等.火山岩体围岩隧道断层带涌水量计算方法综合研究:以青云山隧道为例[J].地质科技情报, 2015, 34(6):193-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201506028 [12] 王建秀, 杨立中, 何静.深埋隧道涌水量数值计算中的试算流量法[J].岩石力学与工程学报, 2002, 21(12):1776-1780. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200212006.htm [13] 武亚遵, 万军伟, 林云, 等.基于岩溶演化模型的隧道突水危险性评价[J].地质科技情报, 2015, 34(5):166-171, 179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201505026 [14] 吕宏兴, 朱凤书, 董鹏.抛物线形喉口式量水槽的简化流量公式[J].西北农林科技大学学报:自然科学版, 2000, 28(3):107-110. http://www.cnki.com.cn/Article/CJFDTotal-XBNY200003022.htm [15] 单长河, 崔国树, 隋国学, 等.无喉堰流量计算公式的理论推导[J].安徽农业科学, 2011, 39(34):21499-21500, 21503. http://www.cqvip.com/QK/90168X/201134/40103565.html [16] She Z, Chen X, Hussain F.A Lie-group derivation of a multi-layer mixing length formula for turbulent channel and pipe flow[Z].https://www.researchgate.net/publication/51968709, 2011. [17] 孙丽霞.青海省公路桥涵设计流量公式的回归分析研究[D].重庆: 重庆交通大学, 2014. [18] 刘韩生.三角剖面堰流量公式及流量系数[J].水资源与水工程学报, 1990, 1(1):81-83. http://www.cqvip.com/QK/97015X/19901/384254.html [19] Gharahjeh S, Aydin I, Altan-Sakarya A B.Weir velocity formulation for sharp-crested rectangular weirs[J].Flow Measurement & Instrumentation, 2015, 41:50-56. http://www.sciencedirect.com/science/article/pii/S095559861400137X [20] 杨华, 陈云良, 何利君, 等.三种堰塞坝溃口发展及最大溃决流量公式拟合[J].中国农村水利水电, 2015(5):129-132. http://d.wanfangdata.com.cn/Periodical/zgncslsd201505032 [21] 李家星, 陈玉璞, 杨志军.梯形槽中三角剖面堰测流特性研究[J].河海大学学报, 1995, 22(5):57-62. http://www.cqvip.com/Main/Detail.aspx?id=1772552 [22] 刘印, 赵昌朋, 赖小玲.浅埋隧道渗流量及孔压分布规律:以富水地区为例[J].沈阳建筑大学学报:自然科学版, 2013, 29(1):23-29, 43. http://www.cnki.com.cn/Article/CJFDTotal-SYJZ201301006.htm [23] 刘福胜, 徐国元, 黄文通.山岭隧道地下水渗流及加固参数的解析研究[J].华南理工大学学报:自然科学版, 2012, 40(2):112-117, 123. http://www.cqvip.com/QK/94312X/20122/41797731.html [24] 聂志宏, 张弥, 白李妍.用经验公式计算隧道涌水量[J].铁道标准设计, 2000, 20(增刊1):48-49. http://www.cqvip.com/QK/96824A/200007/1000146161.html [25] 皇甫明, 谭忠盛, 王梦恕, 等.暗挖海底隧道渗流量的解析解及其应用[J].中国工程科学, 2009, 11(7):66-70. http://d.wanfangdata.com.cn/Periodical/zggckx200907011 [26] 路阳.非水平直圆管中黏性流体层流流量公式的推导及实验验证[J].大学物理实验, 2016, 29(2):30-33. http://www.cnki.com.cn/Article/CJFDTotal-DWSL201602008.htm [27] 李熙喆, 卢德唐, 罗瑞兰, 等.复杂多孔介质主流通道定量判识标准[J].石油勘探与开发, 2019, 46(5):943-949. http://d.old.wanfangdata.com.cn/Periodical_syktykf201905014.aspx [28] 田洪圆.裂隙岩体渗透特性与渗流运动数值模拟研究[D].大连: 大连理工大学, 2017. [29] 张强林, 王媛.裂隙岩体等效热传导系数探讨[J].西安石油大学学报:自然科学版, 2009, 24(4):32-35, 109-110. http://www.cnki.com.cn/Article/CJFDTotal-XASY200904009.htm [30] 姚军, 李亚军, 黄朝琴, 等.裂缝性油藏等效渗透率张量的边界元求解方法[J].油气地质与采收率, 2009, 16(6):80-83, 115-116. http://www.cnki.com.cn/Article/CJFDTotal-YQCS200906028.htm [31] 钟嘉高, 梁杏, 任志刚.岩体裂隙等效水力隙宽的统计确定方法[J].地质科技情报, 2007, 26(4):103-106. http://d.wanfangdata.com.cn/Periodical/dzkjqb200704021 [32] 朱国金.碾压混凝土坝计算参数反演分析[D].南京: 河海大学, 2005. [33] 郭华盛.求三角堰流量简法[J].水文地质工程地质, 1958(3):36-37. http://www.cnki.com.cn/Article/CJFDTotal-SWDG195803010.htm