留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于岩溶水动态模拟的补给面积计算方法

罗明明 姜光辉

罗明明, 姜光辉. 基于岩溶水动态模拟的补给面积计算方法[J]. 地质科技通报, 2022, 41(5): 293-300. doi: 10.19509/j.cnki.dzkq.2022.0184
引用本文: 罗明明, 姜光辉. 基于岩溶水动态模拟的补给面积计算方法[J]. 地质科技通报, 2022, 41(5): 293-300. doi: 10.19509/j.cnki.dzkq.2022.0184
Luo Mingming, Jiang Guanghui. Estimation method of recharge area based on hydrograph simulation of karst water[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 293-300. doi: 10.19509/j.cnki.dzkq.2022.0184
Citation: Luo Mingming, Jiang Guanghui. Estimation method of recharge area based on hydrograph simulation of karst water[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 293-300. doi: 10.19509/j.cnki.dzkq.2022.0184

基于岩溶水动态模拟的补给面积计算方法

doi: 10.19509/j.cnki.dzkq.2022.0184
基金项目: 

国家自然科学基金项目 42172276

国家自然科学基金项目 41807199

国家自然科学基金项目 42172287

详细信息
    作者简介:

    罗明明(1989—), 男, 副教授, 主要从事水文地质环境地质方面的教学与研究工作。E-mail: luomingming@cug.edu.cn

  • 中图分类号: P641.134

Estimation method of recharge area based on hydrograph simulation of karst water

  • 摘要:

    岩溶水系统补给面积的确定是岩溶水文地质调查与研究中的一个难点。基于水均衡原理与水文脉冲函数, 介绍了求取补给面积的计算方法, 并探讨了模型参数的物理意义。选取了广西桂林丫吉试验场岩溶泉、湖北兴山雾龙洞地下河、沪蓉高速峡口隧道集中涌水点3个典型的南方岩溶水系统, 对其水文过程进行模拟, 利用最优模型参数分别求得补给面积, 与其他方法综合确定的补给面积得到了较好的验证。基于岩溶水文过程模拟的补给面积计算方法是对岩溶水系统补给面积求取方法的一种新的补充, 在中小尺度规模的南方岩溶水系统中具有较好的应用前景。

     

  • 图 1  相同有效补给量条件下模型参数τ值对水文过程曲线形态的影响

    Figure 1.  Model parameters controlling the shape of hydrographs under the same effective recharge conditions

    图 2  桂林丫吉试验场S31岩溶泉水文地质图

    Figure 2.  Hydrogeological map of the S31 karst spring at the Yaji experimental site, Guilin

    图 3  桂林丫吉试验场S31岩溶泉水文地质剖面图(图例同图 2)

    Figure 3.  Hydrogeological section of the S31 karst spring at the Yaji experimental site, Guilin

    图 4  广西桂林丫吉试验场S31岩溶泉水文过程模拟

    Figure 4.  Hydrograph simulations of the S31 karst spring at the Yaji experimental site, Guilin, Guangxi

    图 5  湖北兴山雾龙洞地下河水文地质图

    Figure 5.  Hydrogeological map of the Wulongdong underground river in Xingshan, Hubei

    图 6  湖北兴山雾龙洞地下河水文地质剖面图

    Figure 6.  Hydrogeological section of the Wulongdong underground river in Xingshan, Hubei

    图 7  湖北兴山雾龙洞地下河水文过程模拟

    Figure 7.  Hydrograph simulations of the Wulongdong underground river in Xingshan, Hubei

    图 8  沪蓉高速峡口隧道水文地质图

    Figure 8.  Hydrogeological map of Xiakou Tunnel near the Hu-Rong highways

    图 9  沪蓉高速峡口隧道水文地质剖面图

    Figure 9.  Hydrogeological profile of Xiakou Tunnel near the Hu-Rong highways

    图 10  沪蓉高速峡口隧道岩溶涌水过程模拟

    Figure 10.  Hydrograph simulations of the water inrush in Xiakou Tunnel near the Hu-Rong highways

    表  1  模型最优参数及补给面积估算值

    Table  1.   Optimal model parameters and estimated recharge areas

    名称 地貌类型 排泄类型 τ/d M/(10-3m2·s-1) 补给面积/km2
    丫吉S31岩溶泉 峰丛洼地 天然 0.16 0.013 8 1.1
    雾龙洞地下河 溶丘洼地 天然 0.85 0.019 5 8.0
    峡口隧道涌水点 岩溶峡谷 人工 0.45 0.075 0 16.3
    下载: 导出CSV
  • [1] Di Matteo L, Valigi D, Cambi C. Climatic characterization and response of water resources to climate change in limestone areas: Considerations on the importance of geological setting[J]. Journal of Hydrologic Engineering, 2013, 18(7): 773-779. doi: 10.1061/(ASCE)HE.1943-5584.0000671
    [2] Han D M, Xu H L, Liang X. GIS-based regionalization of a karst water system in Xishan Mountain area of Taiyuan Basin, North China[J]. Journal of Hydrology, 2006, 331: 459-470. doi: 10.1016/j.jhydrol.2006.05.037
    [3] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G, et al. Groundwater systems: Theory, application, investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [4] 罗明明, 肖天昀, 陈植华, 等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质, 2014, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm

    Luo M M, Xiao T Y, Chen Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River karst basin[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 13-19, 25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm
    [5] Goldscheider N, Drew D. Methods in karst hydrogeology[M]. London: Taylor & Francis, 2007.
    [6] Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area, South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002. doi: 10.1007/s10040-016-1462-3
    [7] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [8] 王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001

    Wang Y X, Du Y, Deng Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0001
    [9] 尹德超, 罗明明, 张亮, 等. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质, 2016, 43(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm

    Yin D C, Luo M M, Zhang L, et al. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogelogy & Engineering Geology, 2016, 43(3): 11-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm
    [10] 廖春来, 罗明明, 周宏. 鄂西岩溶槽谷区岩溶洼地的水位响应特征及产流阈值估算[J]. 中国岩溶, 2020, 39(6): 802-809. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202006002.htm

    Liao C L, Luo M M, Zhou H. Water level response characteristics and runoff threshold estimation of karst depressions in a valley region, western Hubei Province[J]. Carsologica Sinica, 2020, 39(6): 802-809(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202006002.htm
    [11] Criss R E, Winston W E. Hydrograph for small basins following intense storms[J]. Geophysical Research Letters, 2003, 30(6): 1314-1318. doi: 10.1029/2002GL016808
    [12] Criss R E, Winston W E. Discharge predictions of a rainfall-driven theoretical hydrograph compared to common models and observed data[J]. Water Resources Research, 2008, 44: W10407. doi: 10.1029/2007WR006415
    [13] Yang Y, Endreny T A. Watershed hydrograph model based on surface flow diffusion[J]. Water Resources Research, 2013, 49: 507-516. doi: 10.1029/2012WR012186
    [14] Luo M M, Chen Z H, Criss R E, et al. Method for calibrating a theoretical model in karst springs: An example for a hydropower station in South China[J]. Hydrological Processes, 2016, 30(25): 4815-4825. doi: 10.1007/s12665-015-4644-8
    [15] Luo M M, Chen J, Jakada H, et al. Identifying and predicting karst water inrush in a deep tunnel, South China[J]. Engineering Geology, 2022, 305: 106716.
    [16] 罗明明. 南方岩溶水循环的物理机制与数学模型研究: 以香溪河岩溶流域为例[D]. 武汉: 中国地质大学(武汉), 2017.

    Luo M M. The physical mechanism and mathematical model of karst water circulation: A case study of the Xiangxi River karst basin, South China[D]. Wuhan: China University of Geosciences(Wuhan), 2017(in Chinese with English abstract).
    [17] 袁道先, 戴爱德, 蔡五田, 等. 中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究[M]. 广西桂林: 广西师范大学出版社, 1996.

    Yuan D X, Dai A H, Cai W T, et al. Karst water system of a peak cluster catchment in south China's bare karst region and its mathematic model[M]. Guilin Guangxi: Guangxi Normal University Publishing House, 1996(in Chinese).
    [18] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  705
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回