Characterization of karst conduit structure based on multisource artificial tracer test: A case study of the Cangpuwa underground river in Guizhou Province
-
摘要:
人工示踪试验是岩溶水文地质领域的重要研究手段, 分别在基流期和降水条件下对苍蒲凹地下河实施了多源示踪试验, 以探究其岩溶管道的展布特征。试验结果显示, 基流期和降水条件下均检测到来自水箐、黄连村及廖家坡3个落水洞的示踪剂, 降水条件下的示踪剂回收率分别为88.12%, 90.01%, 84.01%, 表明苍蒲凹地下河为多源单汇型地下河。基流期及降水条件下示踪剂运移特征均表明, 水箐至苍蒲凹的流动路径曲率最大, 黄连村至苍蒲凹的流动路径为主岩溶管道, 廖家坡至苍蒲凹的流动路径上存在双通道, 且在靠近地下河出口处存在溶潭, 据此建立了苍蒲凹地下河管道结构的概念模型。研究成果可为复杂岩溶地下河的水资源调查及开发利用提供依据。
Abstract:Artificial tracer test is an important research method in the field of karst hydrogeology. In this study, to understand the distribution characteristics of karst conduits more comprehensively, multisource tracer tests were carried out on the Cangpuwa underground river in the base flow period and precipitation conditions. The results showed that tracers from Shuiqing, Huangliancun, and Liaojiapo were detected in the base flow period and precipitation conditions. The tracer recoveries under precipitation conditions were 88.12%, 90.01%, and 84.01%, respectively, indicating that the Cangpuwa underground river was a multisource and single-sink underground river. According to the tracer transport characteristics in both the base flow period and precipitation conditions, a conceptual model of the Cangpuwa underground river karst conduit structure was constructed. The flow path from Shuiqing to Cangpuwa had the largest curvature, the flow path from Huanglian to Cangpuwa was mainly a karst conduit, there were two channels on the flow path from Liaojiapo to Cangpuwa, and there was a dissolved pool near the outlet of the underground river. The research results can provide a basis for the investigation and exploitation of water resources in complex karst underground rivers.
-
表 1 研究区主要落水洞及地下河出口的基本特征
Table 1. Basic characteristics of main sink holes and underground river outlet in the study area
地理位置 苍蒲凹 水箐 黄连村 廖家坡 地层 茅口组
(P2m)茅口组
(P2m)栖霞组
(P2q)茅口组
(P2m)岩性 灰岩 灰岩 灰岩 灰岩 海拔/m 1 607.5 1 799.5 1 882.2 1 854.68 开口方向/(°) 170 90 180 90 形态特征 拱形 圆形 拱形 狭缝 水文属性 地下河出口 落水洞 落水洞 落水洞 表 2 基流期多源人工示踪方案
Table 2. Multisource artificial tracer test scheme in the base flow period
投放点 水箐 黄连村 廖家坡 接受点 苍蒲凹 苍蒲凹 苍蒲凹 投放时间 2018-8-15 18:40 2018-8-10 12:20 2018-8-10 15:00 示踪剂名称 荧光增白剂 荧光素钠 罗丹明 投放质量/kg 1 3 1 表 3 降水条件下多源人工示踪方案
Table 3. Multisource artificial tracer test scheme under precipitation condition
投放点 水箐 黄连村 廖家坡 接受点 苍蒲凹 苍蒲凹 苍蒲凹 投放时间 2020-9-4 2:30 2020-9-4 2:30 2020-9-4 2:30 示踪剂名称 罗丹明 荧光增白剂 荧光素钠 投放质量/kg 6 6 6 表 4 基流期示踪试验结果
Table 4. Results of tracer tests in the base flow period
投放点 水箐 黄连村 廖家坡 接受点 苍蒲凹 苍蒲凹 苍蒲凹 水平距离/m 4 970 7 900 8 360 水力坡度 0.044 0.034 0.030 初现时间/h 113.0 117.25 176.60 峰值时间/h 125.3 185.00 184.00 平均滞留时间/h 184.0 222.89 196.94 最大流速/(m·h-1) 43.90 67.38 47.32 峰值质量流速/(m·h-1) 39.67 42.70 45.40 平均流速/(m·h-1) 27.34 34.59 42.45 峰值浓度/(μg·L-1) 1.52 6.78 1.13 穿透曲线峰度 5.39 4.78 4.26 穿透曲线偏度 1.75 1.18 1.14 回收率/% 40.12 48.09 15.23 注: 峰值流速、峰值时间、峰值质量浓度均为第一个峰的特征值 表 5 降水条件下示踪试验结果
Table 5. Results of tracer tests under precipitation condition
投放点 水箐 黄连村 廖家坡 接受点 苍蒲凹 苍蒲凹 苍蒲凹 水平距离/m 4 970 7 900 8 360 水力坡度 0.044 0.034 0.030 初现时间/h 52.6 49.0 113.50 峰值到达时间/h 60.25 53.50 153.50 平均滞留时间/h 64.03 54.57 180.36 最大流速/(m·h-1) 94.367 161.22 138.4 峰值流速/(m·h-1) 82.49 147.67 54.46 平均流速/(m·h-1) 77.61 145.01 46.35 峰值质量浓度/(μg·L-1) 18.08 32.40 8.79 穿透曲线峰度 4.43 3.27 1.518 1 穿透曲线偏度 1.635 0.269 1 0.286 4 回收率/% 88.12 90.01 84.01 注: 峰值流速、峰值时间、峰值质量浓度均为第一个峰的特征值 表 6 地下河管道几何参数
Table 6. Geometrical parameters of karst conduits
几何参数 黄连村→苍蒲凹 水箐→苍蒲凹 廖家坡→苍蒲凹 管道体积/m3 0.535 5×106 0.742 0×106 0.170 3×107 管道湿截面积/m2 67.79 149.29 141.91 管道等效内径/m 4.64 6.89 6.72 -
[1] 胡伟, 吕玉香, 郭传道. 云南蒙自断陷盆地岩溶地下水流向研究[J]. 水文, 2017, 37(4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704007.htmHu W, Lü Y X, Guo C D. Study on flow direction of karst groundwater in Mengzi fault basin of Yunnan Province[J]. Journal of China Hydrology, 2017, 37(4): 35-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704007.htm [2] 张亮, 陈植华, 周宏, 等. 典型岩溶泉水文地质条件的调查与分析: 以香溪河流域白龙泉为例[J]. 水文地质工程地质, 2015, 42(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htmZhang L, Chen Z H, Zhou H, et al. Investigation and analysis of the hydrogeological characteristics of the typical karst spring in the Xiangxi River basin: Exemplified by the Bailong Spring in Xingshan County of Hubei[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 31-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htm [3] 徐啸川, 徐光黎, 魏文豪, 等. 示踪实验在湾潭隧道涌水突泥判别中的应用[J/OL]. 地质科技通报, (2022-06-22)[2022-07-06]DOI: 10.19509/j.cnki.dzkq.2022.0141.Xu X C, Xu G L, Wei W H, et al. Application of tracer experiment in prediction of water and mud inrush in Wantan Tunnel[J/OL]. Bulletin of Geological Science and Technology(2022-06-22)[2022-07-06]DOI: 10.19509/j.cnki.dzkq.2022.0141(in Chinese with English abstract). [4] 汪进良, 姜光辉, 侯满福, 等. 自动化监测电导率在盐示踪试验中的应用: 以云南宝宝水库盐示踪试验为例[J]. 地球学报, 2005, 26(4): 371-374. doi: 10.3321/j.issn:1006-3021.2005.04.014Wang J L, Jiang G H, Hou M F, et al. Application of electric conductivity to the tracing test: A case study of Baobao reservoir[J]. Acta Geoscientica Sinica, 2005, 26(4): 371-374(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2005.04.014 [5] 邓振平, 周小红, 何师意, 等. 西南岩溶石山地区岩溶地下水示踪试验与分析: 以湖南湘西大龙洞为例[J]. 中国岩溶, 2007, 26(2): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200702013.htmDeng Z P, Zhou X H, He S Y, et al. Analysis and tracing-test to karst groundwater in southwest China karst rocky mountain area: A case study in Dalongdong, west Hunan[J]Carsologica Sinica, 2007, 26(2): 163-169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200702013.htm [6] Chen Y F, Zhang Q, Xie S J. Application of tracer experiments to predict leakage channel: An example of a Power Plant in Zhen'an[J]. Journal of Groundwater Science and Engineering, 2014, 2(1): 49-55. https://www.sciencedirect.com/science/article/pii/S004313540700036X [7] 杨平恒, 张宇, 田萍, 等. 川东平行岭谷典型岩溶含水介质特征的识别方法探讨: 以重庆青木关地下水系统为例[J]. 西南大学学报: 自然科学版, 2016, 38(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201602015.htmYang P H, Zhang Y, Tian P, et al. A methodological research on the identification of a typical karst aquifer media in the paralleled ridge -valley of East Sichuan: A case study of Qingmuguan karst groundwater system, Chongqing[J]. Journal of Southwest University: Natural Science Edition, 2016, 38(2): 90-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201602015.htm [8] 刘树林, 范泽英, 杨平恒, 等. 基于在线高分辨率示踪试验的岩溶地下河管道特征分析: 以重庆市彭水县岩窝坨至纸厂泉段地下河为例[J]. 西南大学学报: 自然科学版, 2015, 37(10): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201510021.htmLiu S L, Fan Z Y, Yang P H, et al. Determination of the conduit structure in a karst subterranean river based on the technique of online and high-resolution tracing test: A case study in Pengshui county, Chongqing[J]. Journal of Southwest University: Natural Science Edition, 2015, 37(10): 125-130(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201510021.htm [9] 罗明明, 尹德超, 张亮, 等. 南方岩溶含水系统结构识别方法初探[J]. 中国岩溶, 2015, 34(6): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htmLuo M M, Yin D C, Zhang L, et al. Identifying methods of karst aquifer system structure in South China[J]. Carsologica Sinica, 2015, 34(6): 543-550(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm [10] 吕全标, 胡晓农, 曹建华, 等. 基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J]. 中国岩溶, 2017, 36(5): 727-735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705017.htmLü Q B, Hu X N, Cao J H, et al. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. Carsologica Sinica, 2017, 36(5): 727-735(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705017.htm [11] Cen X Y, Xu M, Qi J H, et al. Characterization of karst conduits by tracer tests for an artificial recharge scheme[J]. Hydrogeology Journal, 2021, 29: 2381-2396. doi: 10.1007/s10040-021-02398-w [12] 赵一, 李衍青, 覃星铭, 等. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶, 2017, 36(2): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201702010.htmZhao Y, Li Y Q, Qin X M, et al. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica, 2017, 36(2): 226-233(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201702010.htm [13] Field M S, Leij F J. Solute transport in solution conduits exhibiting multi-peaked breakthrough curves[J]. Journal of Hydrology, 2012, 440/441: 26-35. https://www.sciencedirect.com/science/article/pii/S0022169412002168 [14] 赵小二, 常勇, 吴吉春. 岩溶地下河污染物运移模型对比研究[J]. 环境科学学报, 2020, 40(4): 1250-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202004012.htmZhao X E, Chang Y, Wu J C. A comparative study on two contaminant transport models used in karst underground rivers[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1250-1259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202004012.htm [15] Nguyen V H. Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data[J]. Journal of Groundwater Science and Engineering, 2021, 9(4): 292-303. [16] 牛宏, 魏小雅, 林晶晶, 等. 盆地多级次地下水流系统盐分运移实验模拟[J]. 地质科技通报, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019Niu H, Wei X Y, Lin J J, et al. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0019 [17] 贺秋芳, 杨平恒, 袁文昊, 等. 微生物与化学示踪岩溶地下水补给源和途径[J]. 水文地质工程地质, 2009, 36(3): 33-37 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200903010.htmHe Q F, Yang P H, Yuan D X, et al. Using chemical and microbiological indicators to track the recharge of underground rivers in a karst valley[J]. Hydrogeology & Engineering Geology, 2009, 36(3): 33-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200903010.htm [18] Vesper D J, Bravo-Ruiz H, Laskoskie A F, et al. Development and testing of hydrogel beads as potential floating tracers of contaminant movement in karst aquifers[J]. Advances in Karst Science, 2018, 16: 145-153. doi: 10.1007/978-3-319-51070-5_16 [19] Goeppert N, Goldscheider N. Improved understanding of particle transport in karst groundwater using natural sediments as tracers[J]. Water Research, 2019, 166: 115045. [20] 姜光辉, 郭芳, 汤庆佳, 等. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报: 自然科学版, 2016, 52(3): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603012.htmJiang G H, Guo F, Tang Q J, et al. Application of tracer test techniques in hydrogeological survey in karst area[J]. Journal of Nanjing University: Natual Sciences Edition, 2016, 52(3): 503-511(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603012.htm [21] 程亚平, 陈余道. 岩溶地下河定量示踪研究方法综述[J]. 桂林理工大学学报, 2016, 36(2): 242-246. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201602007.htmCheng Y P, Chen Y D. Review of quantitative tracing studies on karst underground river[J]. Journal of Guilin University of Technology, 2016, 36(2): 242-246(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201602007.htm [22] Field M S. QTRACER2 program for tracer-breakthrough curve analysis for karst aquifers and other hydrologic systems[R]. [S. l. ]: The United States Environmental Protection Agency, 2002. [23] 何师意, Michele L, 章程, 等. 高精度地下水示踪技术及其应用: 以毛村地下河流域为例[J]. 地球学报, 2009, 30(5): 673-678. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200905018.htmHe S Y, Michele L, Zhang C, et al. A high precision underground water tracing test technique and its applications: A case study in Maocun karst system, Guilin, Guangxi[J]. Acta Geoscientica Sinica, 2009, 30(5): 673-678(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200905018.htm [24] 杨平恒, 袁道先, 蓝家程, 等. 基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J]. 西南大学学报: 自然科学版, 2013, 35(2): 103-108.Yang P H, Yuan D X, Lan J C, et al. Tracing test of a karst aquifer based on online, high-resolution monitoring and quantitative calculation[J]. Journal of Southwest University: Natural Science Edition, 2013, 35(2): 103-108(in Chinese with English abstract). [25] 陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪: 以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305006.htmChen Y D, Cheng Y P, Wang H, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: Exemplified by the Zhaidi underground river in Guilin[J]. Hydrogeology & Engineering Geology, 2013, 40(5): 11-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305006.htm [26] 赵良杰, 夏日元, 易连兴, 等. 岩溶地下河浊度来源及对示踪试验影响的定量分析[J]. 地球学报, 2016, 37(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201602013.htmZhao L J, Xia R Y, Yi L X, et al. Quantitative analysis of the source and the effect of turbidity in karst river on tracer test[J]. Acta Geoscientica Sinica, 2016, 37(2): 241-246(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201602013.htm [27] 黄芬, 尹伟璐, 胡晓农, 等. 桂林毛村地下河流域雨季与旱季定量示踪分析[J]. 中国岩溶, 2017, 36(5): 648-658. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705007.htmHuang F, Yin W L, Hu X N, et al. A quantitative analysis of tracing tests fot the Maocun subterranean river basin of Guilin during rainly and dry seasons[J]. Carsologica Sinica, 2017, 36(5): 648-658(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705007.htm [28] 鲁程鹏, 束龙仓, 苑利波, 等. 基于示踪试验求解岩溶含水层水文地质参数[J]. 吉林大学学报: 地球科学版, 2009, 39(4): 717-721. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904016.htmLu C P, Shu L C, Yuan L B, et al. Determination of hydrogeologic parameters of karst aquifer based on tracer test[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(4): 717-721(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904016.htm [29] Barberá J A, Mudarra M, Andreo B, et al. Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga Province, southern Spain[J]. Hydrogeology Journal, 2018, 26: 23-40. doi: 10.1007/s10040-017-1638-5 [30] 吴持恭. 水力学[M]. 北京: 高等教育出版社, 1982.Wu C G. Hydraulic mechanics[M]. Beijing: Higher Education Press, 1982(in Chinese). [31] Toride N. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0[R]. Riverside, CA: US Salinity Laboratory, 1995. [32] Leibundgut C, Maloszewski P, Külls C. Tracers in hydrology[J]. Hydrologie und Wasserbewirtschaftung, 2009, 53(6): 418. [33] 刘再华, Dreybrodt W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学: 中国地质大学学报, 2006, 31(3): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603020.htmLiu Z H, Dreybrodt W, Li Z H. Camparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science: Journal of China University of Geosciences, 2006, 31(3): 411-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603020.htm [34] Wang C Q, Wang X G, Majdalani S, et al. Influence of dual conduit structure on solute transport in karst tracer tests: An experimental laboratory study[J]. Journal of Hydrology, 2020, 590: 125255.