A review of luminescence dating on marine sediments
-
摘要:
自释光现象被用于沉积物测年的半个多世纪以来,释光测年技术已被广泛应用于各类海洋沉积物的年代测定,为古环境古气候和构造活动及地形地貌演变等研究提供了高精度年代学约束的同时,释光测年技术的精度和准确性也取得了长足发展。在系统回顾和总结海洋沉积物释光测年的发展历史基础上,详细讨论了释光测年技术在海洋沉积物测年中的研究现状,总结了全球海洋沉积物释光测年研究的特点。海洋沉积物的沉积埋藏过程相对复杂,部分晒退现象普遍存在,饱和含水的沉积环境导致环境剂量精确测定存在一定困难。因此在海洋沉积物年代测定和计算过程中需要根据实际情况对样品的释光性质进行分析,选择合适的等效剂量测试方法,并使用合适的环境剂量校正方法进行年代计算。释光测年方法在晚更新世以来海洋沉积物测年中表现出了独特的优势,释光测年目标矿物在海洋沉积物中普遍存在,并且随着近年来研究的不断深入,测年精度也得到了明显的提高,可以为晚更新世以来的海洋沉积物研究提供高精度的绝对年代地层格架。
Abstract:During the past 50 years, luminescence dating has been widely applied to dating various marine sediments, which provides important chronological constraints for researches on climate, structure, and geomorphic activities. This paper summarizes articles related to luminescence dating on marine sediments and discusses the details of the development of luminescence dating methodology as well as its applications for marine sediments. The characteristics of luminescence dating on marine sediments in different regions around the world and their contributions to dating the marine sediments by luminescence dating have been summarized. The deposition and burial processes of marine sediments are relatively complex, and insufficient bleaching phenomena are ubiquitous. The saturated water-bearing sedimentary environment makes it difficult to accurately determine the annual dose. Therefore, in the process of dating and calculating the luminescence ages of marine sediments, it is necessary to analyze the luminescence properties of specific samples, select the appropriate equivalent dose test method, and adopt the appropriate annual dose correction method for age calculation. The luminescence dating method has shown unique advantages in various studies of marine sediments since the late Pleistocene. The targeted minerals for luminescence dating commonly exist in marine sediments.With great developments in recent years, the age accuracy has also been significantly improved, which can provide a high-precision absolute chronostratigraphic framework for various studies of marine sediments since the late Pleistocene.
-
Key words:
- marine sediments /
- luminescence dating /
- Quaternary /
- research status and prospect
-
表 1 海洋沉积物释光测年研究实例
Table 1. Case studies on luminescence dating on marine sediments
序号 地理位置 沉积物类型 等效剂量测试方法 环境剂量测试方法 资料来源 亚洲 1 渤海湾西岸 海岸沙丘 OSL/IRSL 厚源α计数器、火焰光度计 文献[50] 2 渤海湾西岸 浅海沉积物 OSL/IRSL 电感耦合等离子质谱法 文献[51] 3 渤海湾南岸 三角洲沉积物 OSL 文献[53] 4 渤海湾南岸 三角洲沉积物 OSL 中子活化分析 文献[54] 5 渤海湾西岸 海岸沙丘 OSL 电感耦合等离子质谱法 文献[55] 6 渤海湾北岸 海岸沙丘 OSL/IRSL 高分辨率伽马能谱 文献[39] 7 渤海湾辽河三角洲 三角洲沉积物 OSL 文献[56] 8 南黄海西岸 浅海沉积物 OSL 文献[57] 9 南黄海沿岸 潮坪沉积物 OSL 中子活化分析 文献[58] 10 江苏沿海平原 海岸沙丘 OSL/IRSL 中子活化分析 文献[37] 11 东海外陆架 浅海沉积物 OSL 文献[59] 12 东海内陆架 三角洲沉积物 OSL 中子活化分析 文献[60] 13 长江入海口 三角洲沉积物 OSL 中子活化分析 文献[61] 14 长江三角洲 潮坪沉积物 IRSL 中子活化分析 文献[62] 15 长江三角洲 三角洲沉积物 OSL 中子活化分析 文献[63] 16 台湾西南岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[64] 17 香港大澳湾 浅海沉积物 OSL 中子活化分析 文献[65] 18 海南岛西部海域 浅海沉积物 OSL 电感耦合等离子质谱法 文献[66] 19 海南岛东北岸、东南岸 海岸沙丘 OSL 中子活化分析 文献[67] 20 海南岛西南部海域 浅海沉积物 OSL 中子活化分析 文献[68] 21 海南岛东北岸 海岸沙丘 OSL 中子活化分析 文献[69] 22 韩国东南海岸 海蚀阶地 OSL 高分辨率伽马能谱法 文献[70] 23 韩国西部海岸 潮坪沉积物 IRSL 高纯锗伽马能谱法 文献[71] 24 韩国东南海岸 海蚀阶地 OSL 高分辨率伽马能谱法 文献[72] 25 韩国西南海岸 浅海沉积物 OSL 高分辨率伽马能谱法 文献[73] 26 韩国东南海岸 三角洲沉积物 OSL 高分辨率伽马能谱法 文献[74] 27 韩国西南济州海峡 浅海沉积物 OSL 文献[75] 28 韩国西南海域 浅海沉积物 OSL 高分辨率伽马能谱法 文献[76] 29 韩国东南海岸 三角洲沉积物 OSL 高分辨率伽马能谱法 文献[77] 30 冲绳海槽 深海沉积物 IRSL 高分辨率伽马能谱法 文献[78] 31 日本南海海槽 深海沉积物 TL 文献[79] 32 日本中部海岸 海蚀阶地 OSL/TL 中子活化分析 文献[20] 33 日本中部海岸 海岸沙丘 OSL 电感耦合等离子质谱法 文献[80] 34 日本西部海岸 海岸沙丘 OSL/IRSL 电感耦合等离子质谱法 文献[45] 35 日本东部海岸 海岸沙丘 OSL α计数器/β计数器 文献[81] 36 日本西北部海岸 海岸沙丘 OSL/IRSL 高分辨率伽马光谱法 文献[47] 37 日本东北部海岸 潮坪沉积物 IRSL 电感耦合等离子质谱法 文献[82] 38 日本海北部 浅海沉积物 OSL/IRSL 中子活化分析 文献[49] 39 鄂霍茨克海中部 深海沉积物 OSL 高分辨率伽马光谱法 文献[83] 40 鄂霍次克海西南部 深海沉积物 OSL 高分辨率伽马光谱法 文献[84] 41 越南东南部海岸 海岸沙丘 TL 厚源α计数器、原子吸收光谱法 文献[85] 42 越南湄公河三角洲 三角洲沉积物 OSL 电感耦合等离子质谱法 文献[86] 43 泰国弗拉通岛 海啸沉积物 OSL 高分辨率伽马能谱法 文献[17] 44 马来西亚西部海岸 海岸沙丘 TL 厚源α计数器、原子发射光谱法 文献[87] 45 安达曼群岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[88] 46 斯里兰卡东南海岸 海岸沙丘 TL 厚源α计数器、NaI伽马能谱法 文献[89] 47 印度东南海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[90] 48 印度东部海岸 海啸沉积物 OSL 厚源α计数器、伽马能谱法 文献[16] 49 印度东部海岸 海岸沙丘 OSL/IRSL NaI伽马能谱法 文献[42] 50 印度西北部海岸 海岸沙丘 OSL X射线荧光法 文献[91] 51 伊朗东南海岸 海蚀阶地 OSL 电感耦合等离子质谱法(ICP-MS) 文献[92] 52 阿曼东部海岸 海岸沙丘 OSL/IRSL BEGe、NaI伽马能谱法 文献[43] 53 迪拜西部海岸 潮坪沉积物 OSL 高分辨率伽马能谱法/电感耦合等离子质谱法(ICP-MS) 文献[93] 54 地中海东部海岸 海岸沙丘 TL/IRSL 电感耦合等离子质谱、光谱法(ICP-MS、OES) 文献[34] 55 以色列阿什凯隆西部海域 浅海沉积物 TL/IRSL 电感耦合等离子质谱、光谱法(ICP-MS、OES) 文献[27] 56 以色列西部海岸 浅海沉积物 OSL 文献[94] 57 黑海南部海岸 海蚀阶地 OSL 电感耦合等离子质谱、光谱法(ICP-MS、OES) 文献[95] 58 以色列西部海岸 海岸沙丘 OSL/IRSL 伽马能谱 文献[35] 59 塞浦路斯东南海岸 海岸沙丘 IRSL 电感耦合等离子质谱法(ICP-MS) 文献[96] 60 土耳其北部海岸 海蚀阶地 OSL 文献[97] 大洋洲 61 澳大利亚西南海岸 海岸沙丘 TL 厚源α计数器、原子吸收光谱法 文献[98] 62 澳大利亚西南海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[99] 63 澳大利亚南部诺曼威尔海岸 海岸沙丘 TL 文献[100] 64 澳大利亚南部海域 深海沉积物 OSL 高分辨率伽马能谱法 文献[101] 65 澳大利亚南杨哈斯本半岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[102] 66 澳大利亚南部圭琴湾 海岸沙丘 OSL 文献[103] 67 澳大利亚南部圭琴湾/里沃利湾 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[104] 68 澳大利亚南圭琴湾 海岸沙丘 OSL 高分辨率伽马能谱法 文献[105] 69 澳大利亚东南海岸 海岸沙丘 OSL 中子活化分析、原子吸收光谱法 文献[106] 70 澳大利亚塔斯马尼亚州东南海岸 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[107] 71 澳大利亚东南利普特拉普海岸 海蚀阶地 OSL 中子活化分析、伽马能谱 文献[108] 72 澳大利亚东南吉普斯兰湖海岸 海岸沙丘 TL 厚源α计数器、原子吸收光谱法 文献[109] 73 澳大利亚新南威尔士州海岸 海岸沙丘 TL 文献[110] 74 澳大利亚维多利亚州九十英里海滩 海岸沙丘 OSL 电感耦合等离子质谱法 文献[111] 75 澳大利亚东南双层湾 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[112] 76 澳大利亚新南威尔士州海岸 海岸沙丘 TL 厚源α计数器、X射线荧光法 文献[113] 77 澳大利亚新南威尔士州海岸 海啸沉积物 TL 文献[14] 78 澳大利亚东南本杰洛海滩 海岸沙丘 OSL 电感耦合等离子质谱法 文献[114] 79 澳大利亚东南海岸 海啸沉积物 TL 厚源α计数器、原子发射光谱法 文献[13] 80 澳大利亚新南威尔士州海岸 海啸沉积物 TL 厚源α计数器、原子发射光谱法 文献[15] 81 澳大利亚新南威尔士州海岸 海啸沉积物 TL 厚源α计数器、原子发射光谱法 文献[115] 82 澳大利亚东南杰维斯湾 海岸沙丘 TL 厚源α计数器、X射线荧光法 文献[116] 83 澳大利亚东南肖尔黑文海岸 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[117] 84 澳大利亚新南威尔士州海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[118] 85 澳大利亚新南威尔士州海岸 海岸沙丘 TL 厚源α计数器、原子发射光谱法 文献[119] 86 澳大利亚东部伊鲁卡-伍迪湾 海岸沙丘 OSL 文献[120] 87 澳大利亚昆士兰州莫尔顿岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[121] 88 澳大利亚东部吉宝湾 海岸沙丘 OSL 高分辨率伽马能谱法 文献[122] 89 澳大利亚昆士兰州东南部海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[123] 90 澳大利亚东南弗雷泽岛 深海沉积物 OSL 文献[124] 91 澳大利亚东部菲茨罗伊河入海口 三角洲沉积物 OSL 高分辨率伽马能谱法 文献[125] 92 澳大利亚东部吉宝湾 海岸沙丘 OSL 高分辨率伽马能谱法 文献[126] 93 澳大利亚东北海岸 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[127] 94 澳大利亚东北海岸 海岸沙丘 OSL 电感耦合等离子质谱法 文献[128] 95 澳大利亚卡彭塔里亚湾 海岸沙丘 TL 厚源α计数器、原子发射光谱法 文献[129] 96 澳大利亚卡彭塔里亚湾 三角洲沉积物 TL 伽马能谱法、X射线荧光法 文献[130] 97 澳大利亚卡彭塔里亚湾 浅海沉积物 OSL/TL 厚源α计数器、原子吸收光谱法 文献[25] 98 澳大利亚卡彭塔里亚湾 海岸沙丘 TL 厚源α计数器、X射线荧光法 文献[131] 99 澳大利亚北部海岸 海岸沙丘 TL 厚源α计数器、X射线荧光法 文献[132] 100 澳大利亚东部莫顿湾 海岸沙丘 OSL/TL 高分辨率伽马能谱法 文献[31] 101 澳大利亚北部海岸 海岸沙丘 TL 中子活化分析、原子吸收光谱法 文献[133] 102 澳大利亚北部海岸 海岸沙丘 TL 中子活化分析、原子吸收光谱法 文献[134] 103 斐济西南海岸 海岸沙丘 OSL 高分辨率伽马能谱法、X射线荧光法 文献[135] 104 新西兰沿岸 海岸沙丘 OSL/IRSL 高分辨率伽马能谱法 文献[40] 105 新西兰大巴里尔岛 海啸沉积物 OSL 中子活化分析、电感耦合等离子光谱法 文献[136] 106 新西兰中部海岸 海岸沙丘 IRSL 厚源计数法、原子吸收光谱法 文献[137] 107 新西兰西部骑士岬 海蚀阶地 OSL 伽马能谱法 文献[138] 108 新西兰中部海岸 海岸沙丘 IRSL 伽马能谱法 文献[139] 109 新西兰东南海岸 海蚀阶地 OSL 中子活化分析 文献[140] 110 新西兰东南海岸 海蚀阶地 TL 中子活化分析、电感耦合等离子光谱法 文献[141] 非洲 111 埃及北部海岸 海岸沙丘 OSL 中子活化分析 文献[142] 112 突尼斯东北海岸 海蚀阶地 OSL/ IRSL 伽马能谱 文献[46] 113 突尼斯东部海岸 海岸沙丘 IRSL 中子活化分析 文献[52] 114 突尼斯东部海岸 海岸沙丘 OSL NaI伽马能谱法 文献[19] 115 摩洛哥卡萨布兰卡海岸 海蚀阶地 OSL 野外原位伽马能谱 文献[143] 116 加纳沃尔特河海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[144] 117 南非南部海岸 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[145] 118 南非南部海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[146] 119 南非南部海岸 浅海沉积物 OSL 厚源α/β计数器、野外原位伽马能谱 文献[147] 120 南非南部海岸 海岸沙丘 OSL 厚源β计数器、野外原位伽马能谱 文献[148] 121 南非东南海岸 海岸沙丘 TL/IRSL 厚源α计数器、X射线荧光法 文献[32] 122 南非东南海岸 海岸沙丘 OSL 电感耦合等离子质谱、光谱法 文献[149] 123 南非东部海岸 海岸沙丘 IRSL 电感耦合等离子质谱、光谱法 文献[150] 124 莫桑比克东部海岸 海岸沙丘 OSL 厚源α/β计数器 文献[151] 欧洲 125 葡萄牙西部海岸 海岸沙丘 OSL 中子活化分析 文献[152] 126 葡萄牙西部海岸 海岸沙丘 IRSL 厚源α/β计数器 文献[153] 127 西班牙弗门特拉岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[154] 128 西班牙马略卡岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[155] 129 法国西南海岸 海岸沙丘 IRSL 厚源α/β计数器 文献[156] 130 法国西北海岸 海岸沙丘 TL 伽马能谱/厚源计数 文献[157] 131 法国西北海岸 海岸沙丘 OSL 中子活化分析、野外原位伽马能谱 文献[158] 132 法国桑加特海岸 海岸沙丘 TL 伽马能谱法/中子活化分析 文献[159] 133 英国锡利群岛 潮坪沉积物 OSL 厚源α/β计数器 文献[160] 134 英国南部海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[22] 135 威尔士西北海岸 海岸沙丘 OSL 厚源α/β计数器 文献[23] 136 苏格兰北部海岸 海岸沙丘 OSL 厚源计数器、伽马能谱法 文献[161] 137 设得兰群岛西海岸 海岸沙丘 OSL 文献[162] 138 挪威东南海岸 海岸沙丘 OSL/IRSL 厚源α计数器、电感耦合等离子质谱、光谱法 文献[36] 139 丹麦斯卡根半岛 海岸沙丘 OSL 伽马能谱法 文献[163] 140 丹麦斯卡根半岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[164] 141 丹麦斯卡根半岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[165] 142 丹麦海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[166] 143 丹麦安霍尔特岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[167] 144 丹麦西兰岛海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[168] 145 丹麦南部海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[169] 146 丹麦西部海岸 潮坪沉积物 OSL 高分辨率伽马能谱法 文献[170] 147 丹麦西部海岸 海岸沙丘 OSL 文献[171] 148 丹麦西部海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[172] 149 丹麦西部瓦登海 海岸沙丘 OSL 高分辨率伽马能谱法 文献[173] 150 丹麦西部瓦登海 潮坪沉积物 OSL 高分辨率伽马能谱法 文献[174] 151 丹麦西部瓦登海 潮坪沉积物 OSL 高分辨率伽马能谱法 文献[175] 152 丹麦西南海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[176] 153 德国北部海域 浅海沉积物 OSL HPGe伽马能谱法 文献[177] 154 德国北海海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[178] 155 德国北海海岸 潮坪沉积物 OSL 中子活化分析 文献[179] 156 德国北海海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[180] 157 德国北海海岸 海岸沙丘 IRSL 高分辨率伽马能谱法 文献[181] 158 德国亚斯蒙德半岛 海岸沙丘 OSL/IRSL 高分辨率伽马能谱法 文献[38] 159 荷兰西北海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[182] 160 荷兰北部泰瑟尔岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[183] 161 荷兰北部泰瑟尔岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[184] 162 比利时西海岸 潮坪沉积物 OSL 中子活化分析/高分辨率伽马能谱法 文献[185] 163 比利时西海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[186] 164 波罗的海西南海域 海岸沙丘 OSL 高分辨率伽马能谱法 文献[187] 165 波罗的海西南海域 浅海沉积物 OSL 文献[188] 166 波罗的海西南海域 浅海沉积物 OSL HPGe伽马能谱法 文献[189] 167 波罗的海西南海域 浅海沉积物 OSL 高分辨率伽马能谱法 文献[190] 168 波罗的海南部海域 浅海沉积物 OSL HPGe伽马能谱法 文献[191] 169 立陶宛西部海岸 海岸沙丘 OSL 伽马能谱法 文献[192] 170 立陶宛西部海域 海岸沙丘 OSL/IRSL 伽马能谱法 文献[41] 171 拉脱维亚西部海岸 海岸沙丘 OSL/IRSL 中子活化分析 文献[44] 172 爱沙尼亚东北海岸 海岸沙丘 IRSL 伽马能谱法 文献[193] 173 意大利西北海岸 海岸沙丘 OSL 中子活化分析 文献[194] 174 意大利撒丁岛西北海岸 海岸沙丘 OSL 高分辨率伽马能谱法 文献[195] 175 意大利西部海岸 海岸沙丘 IRSL 中子活化分析、原子吸收光谱法 文献[196] 176 意大利南部海岸 海蚀阶地 TL 文献[197] 177 意大利西西里岛西北海岸 海岸沙丘 TL 厚源α计数器、原子吸收光谱法 文献[198] 178 意大利南部海岸 海蚀阶地 TL 中子活化分析、X射线荧光法 文献[199] 179 意大利南部海岸 海蚀阶地 OSL 电感耦合等离子质谱法 文献[200] 180 意大利南部海岸 海蚀阶地 IRSL 中子活化分析、厚源α计数器 文献[201] 181 意大利东南海岸 海蚀阶地 TL/IRSL 伽马能谱法 文献[24] 182 希腊南部海域 深海沉积物 OSL/TL 厚源α计数器、火焰光度计 文献[33] 183 希腊南部海域 深海沉积物 IRSL 厚源α计数器、火焰光度计 文献[202] 184 罗马尼亚多瑙河海岸 海岸沙丘 OSL 野外原位伽马能谱法 文献[203] 185 亚速海北部海岸 海岸沙丘 OSL 中子活化分析 文献[204] 美洲 186 加拿大西北海岸 海岸沙丘 OSL 野外原位伽马能谱法 文献[205] 187 加拿大卡尔弗特岛 海岸沙丘 OSL 中子活化分析 文献[206] 188 加拿大卡尔弗特岛 海岸沙丘 OSL 文献[207] 189 加拿大西部海岸 海啸沉积物 IRSL 厚源α计数器 文献[208] 190 哈德逊湾南岸 海岸沙丘 TL 厚源α计数器、原子吸收光谱法 文献[209] 191 马格达伦岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[210] 192 阿拉斯加南部海岸 海岸沙丘 IRSL 厚源α计数器、火焰光度法 文献[211] 193 俄勒冈州西北海岸 海岸沙丘 OSL β计数器 文献[212] 194 俄勒冈州西部海岸 海岸沙丘 TL 文献[213] 195 俄勒冈州西南海岸 海岸沙丘 OSL 中子活化分析、原子吸收光谱法 文献[214] 196 加利佛尼亚西北海岸 海岸沙丘 TL 厚源α计数器 文献[215] 197 加利福尼亚西部海域 深海沉积物 OSL 高分辨率伽马能谱法 文献[216] 198 墨西哥湾格兰德岛 三角洲沉积物 OSL 中子活化分析 文献[217] 199 墨西哥湾北部海岸 海岸沙丘 OSL 文献[218] 200 墨西哥湾东北海岸 海岸沙丘 OSL/TL 中子活化分析 文献[29] 201 墨西哥湾东北海岸 海啸沉积物 TL 文献[219] 202 墨西哥湾圣文森特 海岸沙丘 OSL 中子活化分析 文献[220] 203 墨西哥湾圣文森特 海岸沙丘 OSL 中子活化分析 文献[221] 204 佐治亚洲海岸 海岸沙丘 OSL NaI伽马能谱法 文献[222] 205 北卡罗来纳州海岸 海岸沙丘 OSL 文献[223] 206 北卡罗来纳州海岸 海岸沙丘 OSL 文献[224] 207 佛吉尼亚洲海岸 海岸沙丘 OSL BEGe伽马能谱法 文献[225] 208 马萨诸塞州海岸 海岸沙丘 OSL 中子活化分析、原子吸收光谱法 文献[226] 209 缅因州海岸 海岸沙丘 OSL 文献[227] 210 厄瓜多尔西部海岸 海蚀阶地 IRSL 中子活化分析、厚源α计数器 文献[228] 211 厄瓜多尔西部海岸 海蚀阶地 IRSL 文献[229] 212 巴西东部海岸 海蚀阶地 OSL/TL 中子活化分析 文献[26] 213 巴西东部海岸 海岸沙丘 OSL/TL NaI伽马能谱法 文献[28] 214 巴西东南海岸 海岸沙丘 OSL HPGe伽马能谱法 文献[230] 215 巴西东南海岸 海岸沙丘 OSL 文献[231] 216 巴西南部海岸 海岸沙丘 OSL HPGe伽马能谱法 文献[232] 217 巴西南部海岸 海岸沙丘 OSL HPGe伽马能谱法 文献[233] 218 巴西南部海岸 海岸沙丘 OSL HPGe伽马能谱法 文献[234] 南北极 219 俄罗斯北部海岸 海岸沙丘 OSL HPGe伽马能谱法 文献[235] 220 泰米尔半岛 海岸沙丘 OSL 高分辨率伽马能谱法 文献[236] 221 南极洲乔治王岛 岸沙丘 OSL 伽马能谱法 文献[237] 222 南极洲玛格丽特湾北部海岸 海岸沙丘 OSL 伽马能谱法 文献[238] 223 南极洲玛格丽特湾东部海岸 海岸沙丘 OSL 伽马能谱法 文献[239] 224 南极半岛拉勒曼德峡湾 浅海沉积物 OSL 厚源α计数器、原子吸收光谱法 文献[240] 深海大洋 225 北冰洋 深海沉积物 OSL/TL 厚源α计数器 文献[30] 226 北冰洋 深海沉积物 OSL 厚源α计数器、原子吸收光谱法 文献[241] 227 北冰洋 深海沉积物 OSL 厚源α计数器、原子吸收光谱法 文献[242] 228 北冰洋 深海沉积物 OSL 高分辨率伽马能谱法 文献[243] 229 北冰洋 深海沉积物 OSL/IRSL 高分辨率伽马能谱法 文献[48] 230 太平洋 深海沉积物 TL 厚源α计数器、X射线荧光法 文献[7] 231 大西洋 深海沉积物 OSL 电感耦合等离子质谱法 文献[244] 232 大西洋 深海沉积物 OSL 电感耦合等离子质谱法 文献[245] 233 孟加拉湾 深海沉积物 IRSL — 文献[246] 234 阿拉伯海 深海沉积物 TL 厚源α光谱器、火焰光度计法 文献[247] 235 东印度洋 深海沉积物 OSL 高分辨率伽马能谱法 文献[248] 236 南大洋 深海沉积物 TL 厚源α计数器 文献[18] -
[1] Aitken M J. Physics applied to archaeology: Ⅰ. Dating[J]. Reports on Progress in Physics, 1970, 33(3): 941-1000. doi: 10.1088/0034-4885/33/3/303 [2] Aitken M J. Thermoluminescence Dating[M]. London: Academic Press INC., 1985. [3] Huntley D J, Godfrey-Smith D I, Thewalt M L W. Optical dating of sediments[J]. Nature, 1985, 313: 105-107. doi: 10.1038/313105a0 [4] Wallinga J, Murray A S, Bøtter-Jensen L. Measurement of the dose in quartz in the presence of feldspar contamination[J]. Radiation Protection Dosimetry, 2002, 101(1/4): 367-370. [5] Li W P, Li X X, Mei X, et al. A review of current and emerging approaches for Quaternary marine sediment dating[J]. Science of the Total Environment, 2021, 780: 146522. doi: 10.1016/j.scitotenv.2021.146522 [6] Hughen K A. Radiocarbon dating of deep-sea sediments[J]. Developments in Marine Geology, 2007, 1: 185-210. [7] Huntley D J, Johnson H P. Thermoluminescence as a potential means of dating siliceous ocean sediments[J]. Canadian Journal of Earth Sciences, 1976, 13(4): 593-596. doi: 10.1139/e76-062 [8] Jacobs Z. Luminescence chronologies for coastal and marine sediments[J]. Boreas, 2008, 37(4): 508-535. doi: 10.1111/j.1502-3885.2008.00054.x [9] Madsen A T, Murray A S. Optically stimulated luminescence dating of young sediments: A review[J]. Geomorphology, 2009, 109(1/2): 3-16. [10] 谢丽, 张振克. 光释光测年在海岸风沙地貌研究中的新进展[J]. 海洋地质与第四纪地质, 2011, 31(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101015.htmXie L, Zhang Z K. Progress in optical stimulated luminescence dating for coastal aeolian geomorphology research: A review[J]. Marine Geology and Quaternary Geology, 2011, 31(1): 93-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101015.htm [11] 余涛, 姜涛. 光释光测年技术在海洋沉积物研究中的应用现状与展望[J]. 地质科技情报, 2014, 33(2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402007.htmYu T, Jiang T. Research progress and prospect of optical stimulated luminescence dating for marine sediments[J]. Geological Science and Technology Information, 2014, 33(2): 38-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402007.htm [12] Ku T L, Knauss K G, Mathieu G G. Uranium in open ocean: Concentration and isotopic composition[J]. Deep Sea Research, 1977, 24(11): 1005-1017. doi: 10.1016/0146-6291(77)90571-9 [13] Bryant E A, Yong R W, Price D M. Evidence of tsunami sedimentation on the southeastern coast of Australia[J]. The Journal of Geology, 1992, 100(6): 753-765. doi: 10.1086/629626 [14] Young R W, Bryant E A, Price D M, et al. Chronology of Holocene tsunamis on the southeastern coast of Australia[J]. Transactions Japanese Geomorphological Union, 1997, 18(1): 1-19. [15] Price D M, Bryant E A, Young R W. Thermoluminescence evidence for the deposition of coastal sediments by tsunami wave action[J]. Quaternary International, 1999, 56(1): 123-128. doi: 10.1016/S1040-6182(98)00033-0 [16] Murari M K, Achyuthan H, Singhvi A K. Luminescence studies on the sediments laid down by the December 2004 tsunami event: Prospects for the dating of palaeo tsunamis and for the estimation of sediment fluxes[J]. Current Science, 2007, 92(3): 367-371. [17] Brill D, Klasen N, Brückner H, et al. OSL dating of tsunami deposits from Phra Thong Island, Thailand[J]. Quaternary Geochronology, 2012, 10: 224-229. doi: 10.1016/j.quageo.2012.02.016 [18] Wintle A G, Huntley D J. Thermoluminescence dating of a deep-sea sediment core[J]. Nature, 1979, 279: 710-712. doi: 10.1038/279710a0 [19] Wood P B. Optically stimulated luminescence dating of a Late Quaternary shoreline deposit, Tunisia[J]. Quaternary Science Reviews, 1994, 13(5/7): 513-516. [20] Tanaka K, Hataya R, Spooner N A, et al. Dating of marine terrace sediments by ESR, TL and OSL methods and their applicabilities[J]. Quaternary Science Reviews, 1997, 16(3): 257-264. [21] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X [22] Banerjee D, Murray A S, Foster I D L. Scilly Isles, UK: Optical dating of a possible tsunami deposit from the 1755 Lisbon earthquake[J]. Quaternary Science Reviews, 2001, 20(5): 715-718. [23] Bailey S D, Wintle A G, Duller G A T, et al. Sand deposition during the last Millennium at Aberffraw, Anglesey, North Wales as determined by OSL dating of quartz[J]. Quaternary Science Reviews, 2001, 20(5/9): 701-704. [24] Mauz B, Hassler U. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: New data of relative sea-level changes[J]. Marine Geology, 2000, 170(1/2): 187-203. [25] Chivas A R, Garca A, van der Kaars S, et al. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: An overview[J]. Quaternary International, 2001, 83/85(11): 19-46. [26] Barreto A M F, Bezerra F H R, Suguio K, et al. Late Pleistocene marine terrace deposits in northeastern Brazil: Sea-level change and tectonic implications[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 179(1/2): 57-69. [27] Porat N, Avital A, Frechen M, et al. Chronology of Upper Quaternary offshore successions from the southeastern Mediterranean Sea, Israel[J]. Quaternary Science Reviews, 2003, 22(10): 1191-1199. [28] Tatumi S H, Kowata E A, Gozzi G, et al. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study[J]. Journal of Luminescence, 2003, 102/103(1): 562-565. [29] Otvos E G. Prospects for interregional correlations using Wisconsin and Holocene aridity episodes, northern Gulf of Mexico coastal plain[J]. Quaternary Research, 2004, 61(1): 105-118. doi: 10.1016/j.yqres.2003.08.006 [30] Berger G W. Trans-arctic-ocean tests of fine-silt luminescence sediment dating provide a basis for an additional geochronometer for this region[J]. Quaternary Science Reviews, 2006, 25(19/20): 2529-2551. [31] Brooke B P, Preda M, Lee R, et al. Development, composition and age of indurated sand layers in the Late Quaternary coastal deposits of northern Moreton Bay, Queensland[J]. Journal of the Geological Society of Australia, 2008, 55(2): 141-157. [32] Jacobs Z, Roberts D L. Last Interglacial age for aeolian and marine deposits and the Nahoon fossil human footprints, Southeast Coast of South Africa[J]. Quaternary Geochronology, 2009, 4(2): 160-169. doi: 10.1016/j.quageo.2008.09.002 [33] Polymeris G S, Kitis G, Liolios A K, et al. Luminescence dating of the top of a deep water core from the NESTOR site near the Hellenic Trench, east Mediterranean Sea[J]. Quaternary Geochronology, 2009, 4(1): 68-81. doi: 10.1016/j.quageo.2008.05.001 [34] Faershtein G, Porat N, Matmon A. Extended range luminescence dating of quartz and alkali-feldspar from aeolian sediments in the eastern Mediterranean[J]. Geochronology, 2020, 2(1): 101-118. doi: 10.5194/gchron-2-101-2020 [35] Frechen M, Neber A, Tsatskin A, et al. Chronology of Pleistocene sedimentary cycles in the Carmel Coastal Plain of Israel[J]. Quaternary International, 2004, 121(1): 41-52. doi: 10.1016/j.quaint.2004.01.022 [36] Fuchs M, Kreutzer S, Fischer M, et al. OSL and IRSL dating of raised beach sand deposits along the southeastern coast of Norway[J]. Quaternary Geochronology, 2012, 10: 195-200. doi: 10.1016/j.quageo.2011.11.009 [37] Gao L, Long H, Tamura T, et al. A ~130 ka terrestrial-marine interaction sedimentary history of the northern Jiangsu coastal plain in China[J]. Marine Geology, 2021, 435(4): 106455. [38] Kenzler M, Tsukamoto S, Meng S, et al. Luminescence dating of Weichselian interstadial sediments from the German Baltic Sea coast[J]. Quaternary Geochronology, 2015, 30: 251-256. doi: 10.1016/j.quageo.2015.05.015 [39] Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai Coast China since the Middle Pleistocene by luminescence dating[J]. Marine Geology, 2019, 416: 105980. doi: 10.1016/j.margeo.2019.105980 [40] Madsen A T, Buylaert J-P, Murray A S. Luminescence dating of young coastal deposits from New Zealand using feldspar[J]. Geochronometria, 2011, 38(4): 379-390. doi: 10.2478/s13386-011-0042-5 [41] Bitinas A, Molodkov A, Damušyté A, et al. Reconstruction of the geological history of the Lithuanian Maritime Region from MIS 6 to MIS 3[J]. Quaternary International, 2021. [42] Morthekai P, Rao K N, Nagakumar K C V, et al. Synthesized luminescence ages of palaeo-beach ridges in Krishna-Godavari twin delta plain, east coast of India[J]. Quaternary Geochronology, 2021, 62: 101145. doi: 10.1016/j.quageo.2020.101145 [43] Richard M, Mercier N, Charpentier V, et al. OSL chronology of socio-ecological systems during the mid-Holocene in the eastern coast of the Sultanate of Oman(Arabian Peninsula)[J]. Journal of Archaeological Science: Reports, 2020, 33: 102465. doi: 10.1016/j.jasrep.2020.102465 [44] Saks T, Kalvans A, Zelcs V. OSL dating of Middle Weichselian age shallow basin sediments in Western Latvia, Eastern Baltic[J]. Quaternary Science Reviews, 2012, 44: 60-68. doi: 10.1016/j.quascirev.2010.11.004 [45] Tamura T, Ito K, Inoue T, et al. Luminescence dating of Holocene beach-ridge sands on the Yumigahama Peninsula, western Japan[J]. Geochronometria, 2017, 44(1): 331-340. doi: 10.1515/geochr-2015-0076 [46] Thiel C, Buylaert J-P, Murray A S, et al. A comparison of TT-OSL and post-IR IRSL dating of coastal deposits on Cap Bon peninsula, north-eastern Tunisia[J]. Quaternary Geochronology, 2012, 10: 209-217. doi: 10.1016/j.quageo.2012.03.010 [47] Thiel C, Tsukamoto S, Tokuyasu K, et al. Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits[J]. Quaternary Geochronology, 2015, 29: 16-29. doi: 10.1016/j.quageo.2015.05.008 [48] West G, Alexanderson H, Jakobsson M, et al. Optically stimulated luminescence dating supports pre-Eemian age for glacial ice on the Lomonosov Ridge off the East Siberian continental shelf[J]. Quaternary Science Reviews, 2021, 267: 107082. doi: 10.1016/j.quascirev.2021.107082 [49] Yang L H, Long H, Yi L, et al. Luminescence dating of marine sediments from the Sea of Japan using quartz OSL and polymineral pIRIR signals of fine grains[J]. Quaternary Geochronology, 2015, 30: 257-263. doi: 10.1016/j.quageo.2015.05.003 [50] Zhang J F, Fan C F, Wang H, et al. Chronology of an oyster reef on the coast of Bohai Bay, China: Constraints from optical dating using different luminescence signals from fine quartz and polymineral fine grains of coastal sediments[J]. Quaternary Geochronology, 2007, 2(1/4): 71-76. [51] 陈永胜, 王宏, 裴艳东, 等. 渤海湾西岸晚第四纪海相地层划分及地质意义[J]. 吉林大学学报: 地球科学版, 2012, 42(3): 747-759. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203019.htmChen Y S, Wang H, Pei Y D, et al. Division and its geological significance of the Late Quaternary marine sedimentary beds in the West Coast of Bohai Bay, China[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(3): 747-759(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203019.htm [52] Balescu S, Huot S, Mejri H, et al. Luminescence dating of Middle Pleistocene(MIS 7) marine shoreline deposits along the eastern coast of Tunisia: A comparison of K-feldspar and Na-feldspar IRSL ages[J]. Quaternary Geochronology, 2015, 30: 288-293. doi: 10.1016/j.quageo.2015.05.019 [53] Chen G Q, Yi L, Xu X Y, et al. Testing the standardized growth curve(SGC) to OSL dating coastal sediments from the South Bohai Sea, China[J]. Geochronometria, 2013, 40(2): 101-112. doi: 10.2478/s13386-013-0103-z [54] Yi L, Lai Z P, Yu H J, et al. Chronologies of sedimentary changes in the south Bohai Sea, China: Constraints from luminescence and radiocarbon dating[J]. Boreas, 2013, 42(2): 267-284. doi: 10.1111/j.1502-3885.2012.00271.x [55] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 451: 84-96. doi: 10.1016/j.palaeo.2016.03.012 [56] Zhao G M, Ye S Y, Laws E A, et al. Carbon burial records during the last 40, 000 years in sediments of the Liaohe Delta wetland, China[J]. Estuarine, Coastal and Shelf Science, 2019, 226: 1-10. [57] Huang J, Wan S M, Zhang J, et al. Mineralogical and isotopic evidence for the sediment provenance of the western South Yellow Sea since MIS 3 and implications for paleoenvironmental evolution[J]. Marine Geology, 2019, 414: 103-117. doi: 10.1016/j.margeo.2019.05.011 [58] Gao L, Long H, Shen J, et al. High-resolution OSL dating of a coastal sediment sequence from the South Yellow Sea[J]. Geochronometria, 2016, 43(1): 143-154. doi: 10.1515/geochr-2015-0044 [59] Xu T Y, Shi X F, Liu C G, et al. Stratigraphic framework and evolution of the mid-late Quaternary(since marine isotope stage 8) deposits on the outer shelf of the East China Sea[J]. Marine Geology, 2020, 419: 106047. doi: 10.1016/j.margeo.2019.106047 [60] Wang Y, Long H, Yi L, et al. OSL chronology of a sedimentary sequence from the inner-shelf of the East China Sea and its implication on post-glacial deposition history[J]. Quaternary Geochronology, 2015, 30: 282-287. doi: 10.1016/j.quageo.2015.06.005 [61] Cheng Q Z, Wang F, Chen J, et al. Combined chronological and mineral magnetic approaches to reveal age variations and stratigraphic heterogeneity in the Yangtze River subaqueous delta - ScienceDirect[J]. Geomorphology, 2020, 359: 107-163. [62] Gao L, Long H, Tamura T, et al. Refined chronostratigraphy of a Late Quaternary sedimentary sequence from the Yangtze River delta based on K-feldspar luminescence dating[J]. Marine Geology, 2020, 427: 106271. doi: 10.1016/j.margeo.2020.106271 [63] Niu W L, Zhao L, Switzer A D, et al. Sedimentary evidence for a period of rapid environmental change in the Yangtze Delta, China around 150 years ago[J]. Continental Shelf Research, 2021, 229(3/4): 104552. [64] Chen Y W, Chen Y G, Murray A S, et al. Luminescence dating of neotectonic activity on the southwestern coastal plain, Taiwan[J]. Quaternary Science Reviews, 2003, 22(10): 1223-1229. [65] Yim W S, Hilgers A, Huang G, et al. Stratigraphy and optically stimulated luminescence dating of subaerially exposed Quaternary deposits from two shallow bays in Hong Kong, China[J]. Quaternary International, 2008, 183(1): 23-39. doi: 10.1016/j.quaint.2007.07.004 [66] Chen H J, Harff J, Qiu Y, et al. Last Glacial Cycle and seismic stratigraphic sequences offshore western Hainan Island, NW South China Sea[J]. Geological Society of London Special Publications, 2015, 429(1): 99-121. [67] Jiang T, Liu X J, Yu T, et al. OSL dating of late Holocene coastal sediments and its implication for sea-level eustacy in Hainan Island, Southern China[J]. Quaternary International, 2017, 468: 24-32. [68] Xiong P, Dudzinska-Nowak J, Harff J, et al. Modeling paleogeographic scenarios of the Last Glacial Cycle as a base for source-to-sink studies: An example from the northwestern shelf of the South China Sea[J]. Journal of Asian Earth Sciences, 2020, 203: 104542. doi: 10.1016/j.jseaes.2020.104542 [69] Zheng F, Li Z Z, Jin J H, et al. Luminescence geochronology and paleoenvironmental implications of coastal red dune sands of northeast Hainan Island, China[J]. Aeolian Research, 2021, 53(1): 100744. [70] Choi J H, Murray A S, Jain M, et al. Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea[J]. Quaternary Science Reviews, 2003, 22(2): 407-421. [71] Hong D G, Choi M S, Han J H, et al. Determination of sedimentation rate of a recently deposited tidal flat, western coast of Korea, using IRSL dating[J]. Quaternary Science Reviews, 2003, 22(10/13): 1185-1189. [72] Choi J H, Kim J W, Murray A S, et al. OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics[J]. Quaternary International, 2009, 199(1/2): 3-14. [73] Kim J C, Chang T S, Yi S H, et al. OSL dating of coastal sediments from the southwestern Korean Peninsula: A comparison of different size fractions of quartz[J]. Quaternary International, 2015, 384: 82-90. doi: 10.1016/j.quaint.2014.09.001 [74] Kim J C, Cheong D, Shin S W, et al. OSL chronology and accumulation rate of the Nakdong deltaic sediments, southeastern Korean Peninsula[J]. Quaternary Geochronology, 2015, 30: 245-250. doi: 10.1016/j.quageo.2015.01.006 [75] Hong S H, Chang T S, Lee G-S, et al. Late Pleistocene-Holocene sedimentary facies and evolution of the Jeju Strait shelf, Southwest Korea[J]. Quaternary International, 2019, 519: 156-169. doi: 10.1016/j.quaint.2019.04.014 [76] Kim J C, Chang T S, Yi S H. OSL chronology of the Huksan Mud Belt, south-eastern Yellow Sea, and its paleoenvironmental implications[J]. Quaternary International, 2019, 503(Part A): 170-177. [77] Kim J C, Yoo D G, Hong S H, et al. Chronostratigraphic and palaeogeographic interpretation of Nakdong deltaic sequences in the south-eastern Korean Peninsula[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 584: 110654. doi: 10.1016/j.palaeo.2021.110654 [78] Varma V, Toyoda S, Isono Y, et al. OSL dating of sea floor sediments at the Okinawa Trough[J]. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept, 2015, 48: 617-620. [79] 孔秀, 李琦, 胡俊杰. 日本南海海槽IODP C0004C岩芯样品热释光信号特征及其对古气候变化的响应[J]. 应用海洋学学报, 2015, 34(1): 34-40. doi: 10.3969/J.ISSN.2095-4972.2015.01.005Kong X, Li Q, Hu J J. Thermoluminescent signal of the core C0004C from Nankai Trough and its response to the paleoclimate change[J]. Journal of Applied Oceanography, 2015, 34(1): 34-40(in Chinese with English abstract). doi: 10.3969/J.ISSN.2095-4972.2015.01.005 [80] Tamura T, Bateman M D, Kodama Y, et al. Building of shore-oblique transverse dune ridges revealed by ground-penetrating radar and optical dating over the last 500 years on Tottori coast, Japan Sea[J]. Geomorphology, 2011, 132(3/4): 153-166. [81] Hataya R, Shirai M. Optically stimulated luminescence(OSL) dating of shallow marine sediments[J]. Quaternary Research, 2003, 42(5): 347-359. doi: 10.4116/jaqua.42.347 [82] Ito K, Tamura T, Tsukamoto S. Post-IR IRSL dating of K-feldspar from last interglacial marine terrace deposits on the Kamikita coastal plain, northeastern Japan[J]. Geochronometria, 2017, 44(1): 352-365. doi: 10.1515/geochr-2015-0077 [83] Sugisaki S, Buylaert J P, Murray A S, et al. High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk[J]. Quaternary Geochronology, 2010, 5(2/3): 293-298. [84] Sugisaki S, Buylaert J P, Murray A S, et al. High resolution optically stimulated luminescence dating of a sediment core from the southwestern Sea of Okhotsk[J]. Geochemistry Geophysics Geosystems, 2012, 13(5): 1-20. [85] Murray-Wallace C V, Jones B G, Nghi T, et al. Thermoluminescence ages for a reworked coastal barrier, southeastern Vietnam: A preliminary report[J]. Journal of Asian Earth Sciences, 2002, 20(5): 535-548. doi: 10.1016/S1367-9120(01)00040-2 [86] Tamura T, Saito Y, Bateman M D, et al. Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta[J]. Marine Geology, 2012, 326/328: 140-153. doi: 10.1016/j.margeo.2012.08.004 [87] Kamaludin B H, Nakamura T, Price D M, et al. Radiocarbon and thermoluminescence dating of the Old Alluvium from a coastal site in Perak, Malaysia[J]. Sedimentary Geology, 1993, 83(3/4): 199-210. [88] Kunz A, Frechen M, Ramesh R, et al. Revealing the coastal event-history of the Andaman Islands(Bay of Bengal) during the Holocene using radiocarbon and OSL dating[J]. International Journal of Earth Sciences, 2010, 99(8): 1741-1761. doi: 10.1007/s00531-009-0507-4 [89] Singhvi A K, Deraniyagala S U, Sengupta D. Thermoluminescence dating of Quaternary red-sand beds: A case study of coastal dunes in Sri Lanka[J]. Earth and Planetary Science Letters, 1986, 80(1/2): 139-144. [90] Sathiyaseelan S, Panda D K, Banerjee D, et al. Chronology of coastal dune ridges in Vaigai prodelta region, southeastern Tamil Nadu, India[J]. Current Science, 2021, 120(2): 382-388. doi: 10.18520/cs/v120/i2/382-388 [91] Makwana N, Prizomwala S P, Chauhan G, et al. Late Holocene palaeo-environmental change in the Banni Plains, Kachchh, Western India[J]. Quaternary International, 2019, 507(25): 197-205. [92] Normand R, Simpson G, Herman F, et al. Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone(Iran)[J]. Earth Surface Dynamics, 2019, 7(1): 321-344. doi: 10.5194/esurf-7-321-2019 [93] Zander A, Degering D, Preusser F, et al. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE: Radioactive disequilibria in the uranium decay series[J]. Quaternary Geochronology, 2007, 2(1/4): 123-128. [94] López G I, Goodman-Tchernov B N, Porat N. OSL over-dispersion: A pilot study for the characterisation of extreme events in the shallow marine realm[J]. Sedimentary Geology, 2018, 378: 35-51. doi: 10.1016/j.sedgeo.2018.09.002 [95] Yildirim C, Melnick D, Ballato P, et al. Differential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces[J]. Quaternary Science Reviews, 2013, 81: 12-28. doi: 10.1016/j.quascirev.2013.09.011 [96] Tsakalos E, Athanassas C, Tsipas P, et al. Luminescence geochronology and paleoenvironmental implications of coastal deposits of southeast Cyprus[J]. Archaeological and Anthropological Sciences, 2016, 10(1): 41-60. [97] Berndt C, Yildirim C, Çiner A, et al. Quaternary uplift of the northern margin of the Central Anatolian Plateau: New OSL dates of fluvial and delta-terrace deposits of the Kızılırmak River, Black Sea coast, Turkey[J]. Quaternary Science Reviews, 2018, 201(1): 446-469. [98] Price D M, Brooke B P, Woodroffe C D. Thermoluminescence dating of aceolianites from Lord Howe Island and South-West Western Australian[J]. Quaternary Science Reviews, 2001, 20(5): 841-846. [99] Brooke B P, Olley J M, Pietsch T J, et al. Chronology of Quaternary coastal aeolianite deposition and the drowned shorelines of southwestern Western Australia: A reappraisal[J]. Quaternary Science Reviews, 2014, 93(6): 106-124. [100] Bourman R P, Belperio A P, Murray-Wallace C V, et al. A last interglacial embayment fill at Normanville, South Australia, and its neotectonic implications[J]. Transactiions of the Royal Society of South Australia, 1999, 123: 1-15. [101] Deckker P de, Arnold L J, van der Kaars S, et al. Marine isotope stage 4 in Australasia: A full glacial culminating 65, 000 years ago - Global connections and implications for human dispersal[J]. Quaternary Science Reviews, 2019, 204: 187-207. doi: 10.1016/j.quascirev.2018.11.017 [102] Dillenburg S R, Hesp P A, Keane R, et al. Geochronology and evolution of a complex barrier, Younghusband Peninsula, South Australia[J]. Geomorphology, 2020, 354: 107044. doi: 10.1016/j.geomorph.2020.107044 [103] Bristow C S, Pucillo K. Quantifying rates of coastal progradation from sediment volume using GPR and OSL: The Holocene fill of Guichen Bay, south-east South Australia[J]. Sedimentology, 2006, 53(4): 769-788. doi: 10.1111/j.1365-3091.2006.00792.x [104] Oliver T S N, Murray-Wallace C V, Woodroffe C D. Holocene shoreline progradation and coastal evolution at Guichen and Rivoli Bays, southern Australia[J]. The Holocene, 2020, 30(1): 106-124. doi: 10.1177/0959683619875815 [105] Murray-Wallace C V, Banerjee D, Bourman R P, et al. Optically stimulated luminescence dating of Holocene relict foredunes, Guichen Bay, South Australia[J]. Quaternary Science Reviews, 2002, 21(8/9): 1077-1086. [106] Banerjee D, Hildebrand A N, Murray-Wallace C V, et al. New quartz SAR-OSL ages from the stranded beach dune sequence in south-east South Australia[J]. Quaternary Science Reviews, 2003, 22(10/13): 1019-1025. [107] Oliver T S N, Donaldson P, Sharples C, et al. Punctuated progradation of the Seven Mile Beach Holocene barrier system, southeastern Tasmania[J]. Marine Geology, 2017, 386: 76-87. doi: 10.1016/j.margeo.2017.02.014 [108] Gardner T, Webb J, Pezzia C, et al. Episodic intraplate deformation of stable continental margins: Evidence from Late Neogene and Quaternary marine terraces, Cape Liptrap, Southeastern Australia[J]. Quaternary Science Reviews, 2009, 28(1/2): 39-53. [109] Bryant E A, Price D M. Late Pleistocene marine chronology of the Gippsland Lakes region, Australia[J]. Physical Geography, 1997, 18(4): 318-334. doi: 10.1080/02723646.1997.10642622 [110] Bryant E A, Young R W, Price D M. Late Pleistocene marine deposition and TL chronology of the New South Wales, Australian coastline[J]. Zeitschrift für Geomorphologie, 1997, 41(2): 205-227. doi: 10.1127/zfg/41/1997/205 [111] Kennedy D M, Oliver T S N, Tamura T, et al. Holocene evolution of the Ninety Mile Beach sand barrier, Victoria, Australia: The role of sea level, sediment supply and climate[J]. Marine Geology, 2020, 430: 106366. doi: 10.1016/j.margeo.2020.106366 [112] Oliver T S N, Tamura T, Hudson J P, et al. Integrating millennial and interdecadal shoreline changes: Morpho-sedimentary investigation of two prograded barriers in southeastern Australia[J]. Geomorphology, 2017, 288: 129-147. doi: 10.1016/j.geomorph.2017.03.019 [113] Young R W, Bryant E A, Price D M, et al. Theoretical constraints and chronological evidence of Holocene coastal development in central and southern New South Wales, Australia[J]. Geomorphology, 1993, 7(4): 317-329. doi: 10.1016/0169-555X(93)90061-6 [114] Tamura T, Cunningham A C, Oliver T S N. Two-dimensional chronostratigraphic modelling of OSL ages from recent beach-ridge deposits, SE Australia[J]. Quaternary Geochronology, 2018, 49: 39-44. [115] Young R W, Bryant E A, Price D M. Catastrophic wave(tsunami?) transport of boulders in southern New South Wales, Australia[J]. Zeitschrift für Geomorphologie, 1996, 40(2): 191-207. doi: 10.1127/zfg/40/1996/191 [116] Bryant E A, Young R W, Price D M, et al. The impact of tsunami on the coastline of Jervis Bay, Southeastern Australia[J]. Physical Geography, 2013, 18(5): 440-459. [117] Carvalho R C, Oliver T S N, Woodroffe C D. Transition from marine to fluvial-dominated sediment supply at Shoalhaven prograded barrier, southeastern Australia[J]. Geomorphology, 2019, 341(15): 65-78. [118] Jankowski N R, Jacobs Z, Goldberg P. Optical dating and soil micromorphology at MacCauley's Beach, New South Wales, Australia[J]. Earth Surface Processes and Landforms, 2015, 40(2): 229-242. doi: 10.1002/esp.3622 [119] Thom B G, Hesp P A, Bryant E A. Last glacial "coastal" dunes in eastern Australia and implications for landscape stability during the Last Glacial Maximum[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1994, 111(3/4): 229-248. [120] Goodwin I D, Stables M A, Olley J M. Wave climate, sand budget and shoreline alignment evolution of the Iluka-Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP[J]. Marine Geology, 2006, 226(1/2): 127-144. [121] Brooke B P, Pietsch T J, Olley J M, et al. A preliminary OSL chronology for coastal dunes on Moreton Island, Queensland, Australia: Marginal deposits of A large-scale Quaternary shelf Sediment system[J]. Continental Shelf Research, 2015, 105: 79-94. doi: 10.1016/j.csr.2015.06.002 [122] Brooke B P, Ryan D A, Pietsch T J, et al. Influence of climate fluctuations and changes in catchment land use on Late Holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia[J]. [S. l.]: Marine Geology, 2008, 251(3/4): 195-208. [123] Brooke B P, Lee R, Cox M E, et al. Rates of shoreline progradation during the Last 1700 years at beachmere, Southeastern Queensland, Australia, Based on optically stimulated luminescence dating of beach ridges[J]. Journal of Coastal Research, 2008, 24(3): 640-648. [124] Boyd R, Ruming K, Goodwin I D, et al. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island, southeast Australia[J]. Geology, 2008, 36(1): 15-18. doi: 10.1130/G24211A.1 [125] Bostock H C, Brooke B P, Ryan D A, et al. Holocene and modern sediment storage in the subtropical macrotidal Fitzroy River estuary, Southeast Queensland, Australia[J]. Sedimentary Geology, 2007, 201(3/4): 321-340. [126] Brooke B P, Ryan D A, Radke L, et al. A 1500 year record of coastal sediment accumulation preserved in beach deposits at Keppel Bay, Queensland, Australia[M]. [S. l.]: CRC for Coastal Zone, 2006. [127] Nott J, Forsyth A J, Rhodes E J, et al. The origin of centennial- to millennial-scale chronological gaps in storm emplaced beach ridge plains[J]. Marine Geology, 2015, 367: 83-93. doi: 10.1016/j.margeo.2015.05.011 [128] Forsyth A J, Nott J, Bateman M D, et al. Juxtaposed beach ridges and foredunes within a ridge plain: Wonga Beach, Northeast Australia[J]. Marine Geology, 2012, 307: 111-116. [129] Lees B G, Hayne M, Price D. Marine transgression and dune initiation on western Cape York, northern Australia[J]. Marine Geology, 1993, 114(1/2): 81-89. [130] Porritt E L, Jones B G, Price D M, et al. Holocene delta progradation into an epeiric sea in northeastern Australia[J]. Marine Geology, 2020, 422: 106114. doi: 10.1016/j.margeo.2020.106114 [131] Shulmeister J, Short S A, Price D M, et al. Pedogenic uranium/thorium and thermoluminescence chronologies and evolutionary history of a coastal dunefield, Groote Eylandt, northern Australia[J]. Geomorphology, 1993, 8(1): 47-64. doi: 10.1016/0169-555X(93)90003-K [132] Lees B G, Stanner J, Price D M, et al. Thermoluminescence dating of dune podzols at Cape Arnhem, northern Australia[J]. Marine Geology, 1995, 129(1/2): 63-75. [133] Lees B G, Lu Y C, Head J. Reconnaissance thermoluminescence dating of northern Australian coastal dune systems[J]. Quaternary Research, 1990, 34(2): 169-185. doi: 10.1016/0033-5894(90)90029-K [134] Lees B G, Lu Y C, Price D M. Thermoluminescence dating of dunes at Cape St. Lambert, East Kimberleys, northwestern Australia[J]. Marine Geology, 1992, 106(1/2): 131-139. [135] Anderson A, Roberts R G, Dickinson W, et al. Times of sand: Sedimentary history and archaeology at the Sigatoka Dunes, Fiji[J]. Geoarchaeology, 2006, 21(2): 131-154. doi: 10.1002/gea.20094 [136] Nichol S L, Lian O B, Carter C H. Sheet-gravel evidence for a Late Holocene tsunami run-up on beach dunes, Great Barrier Island, New Zealand[J]. Sedimentary Geology, 2003, 155(1/2): 129. [137] Duller G A T. The age of the Koputaroa dunes, southwest North Island, New Zealand[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 121(1/2): 105-114. [138] Cooper A F, Kostro F. A tectonically uplifted marine shoreline deposit, Knights Point, Westland, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2006, 49(2): 203-216. doi: 10.1080/00288306.2006.9515160 [139] Kennedy D M, Tannock K L, Crozier M J, et al. Boulders of MIS 5 age deposited by a tsunami on the coast of Otago, New Zealand[J]. Sedimentary Geology, 2007, 200(3/4): 222-231. [140] Rees-Jones J, Rink W J, Norris R J, et al. Optical luminescence dating of uplifted marine terraces along the Akatore Fault near Dunedin, South Island, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2000, 43(3): 419-424. doi: 10.1080/00288306.2000.9514898 [141] Litchfield N J, Lian O B. Luminescence age estimates of Pleistocene marine terrace and alluvial fan sediments associated with tectonic activity along coastal Otago, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2004, 41(1): 29-37. [142] El-Asmar H M, Wood P. Quaternary shoreline development: the northwestern coast of Egypt[J]. Quaternary Science Reviews, 2000, 19(11): 1137-1149. doi: 10.1016/S0277-3791(99)00097-9 [143] Rhodes E J, Singarayer J S, Raynal J P, et al. New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco[J]. Quaternary Science Reviews, 2006, 25(19): 2569-2585. [144] Aagaard T, Anthony E, Gillies B, et al. Holocene development and coastal dynamics at the KETA sand spit, Volta river delta, Ghana[J]. Geomorphology, 2021, 387: 107766. doi: 10.1016/j.geomorph.2021.107766 [145] Bateman M D, Holmes P J, Carr A S, et al. Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa[J]. Quaternary Science Reviews, 2004, 23(14): 1681-1698. [146] Jacobs Z, Roberts R G, Lachlan T J, et al. Development of the SAR TT-OSL procedure for dating Middle Pleistocene dune and shallow marine deposits along the southern Cape coast of South Africa[J]. Quaternary Geochronology, 2011, 6(5): 491-513. [147] Cawthra H C, Jacobs Z, Compton J S, et al. Depositional and sea-level history from MIS 6(Termination Ⅱ) to MIS 3 on the southern continental shelf of South Africa[J]. Quaternary Science Reviews, 2018, 181: 156-172. doi: 10.1016/j.quascirev.2017.12.002 [148] Bateman M D, Carr A S, Dunajko A C, et al. The evolution of coastal barrier systems: A case study of the Middle-Late Pleistocene Wilderness barriers, South Africa[J]. Quaternary Science Reviews, 2011, 30(1/2): 63-81. [149] Botha G A, Porat N, Haldorsen S, et al. Beach ridge sets reflect the Late Holocene evolution of the St Lucia estuarine lake system, South Africa[J]. Geomorphology, 2018, 318: 112-127. doi: 10.1016/j.geomorph.2018.06.001 [150] Porat N, Botha G A. The luminescence chronology of dune development on the Maputaland coastal plain, southeast Africa[J]. Quaternary Science Reviews, 2008, 27(9/10): 1024-1046. [151] Armitage S J, Botha G A, Duller G A T, et al. The formation and evolution of the barrier islands of Inhaca and Bazaruto, Mozambique[J]. Geomorphology, 2006, 82(3/4): 295-308. [152] Costa P J M, Leroy S A G, Dinis J L, et al. Recent high-energy marine events in the sediments of Lagoa de Óbidos and Martinhal(Portugal): Recognition, age and likely causes[J]. Natural Hazards and Earth System Sciences, 2012, 12(5): 1367-1380. doi: 10.5194/nhess-12-1367-2012 [153] Clarke M L, Rendell H M. Effects of storminess, sand supply and the North Atlantic Oscillation on sand invasion and coastal dune accretion in western Portugal[J]. Holocene, 2006, 16(3): 341-355. doi: 10.1191/0959683606hl932rp [154] Del Valle L, Timar-Gabor A, Pomar F, et al. Millennial-scale climate variability recorded in Late Pleistocene coastal deposits of Formentera Island(Balearic Archipelago, Western Mediterranean)[J]. Quaternary International, 2021(1): 1-17. [155] Fornós J J, Clemmensen L B, Gómez-Pujol L, et al. Late Pleistocene carbonate aeolianites on Mallorca, Western Mediterranean: A luminescence chronology[J]. Quaternary Science Reviews, 2009, 28(25/26): 2697-2709. [156] Clarke M L, Rendell H M, Tastet J-P, et al. Late-Holocene sand invasion and North Atlantic storminess along the Aquitaine Coast, southwest France[J]. Holocene, 2002, 12(2): 231-238. doi: 10.1191/0959683602hl539rr [157] Balescu S, Packman S C, Wintle A G. Chronological separation of interglacial raised beaches from Northwestern Europe using thermoluminescence[J]. Quaternary Research, 1991, 35(1): 91-102. doi: 10.1016/0033-5894(91)90097-O [158] Coutard S, Lautridou J-P, Rhodes E J, et al. Tectonic, eustatic and climatic significance of raised beaches of Val de Saire, Cotentin, Normandy, France[J]. Quaternary Science Reviews, 2006, 25(5/6): 595-611. [159] Balescu S, Packman S C, Wintle A G, et al. Thermoluminescence dating of the middle Pleistocene raised beach of Sangatte(Northern France)[J]. Quaternary Research, 1992, 37(3): 390-396. doi: 10.1016/0033-5894(92)90075-T [160] Roberts H M, Marshall P. Isles of scilly, optically stimulated luminescence dating of coastal and intertidal sediments[R]. London: English Heritage, 2013. [161] McIlvenny J D, Muller F L L, Dawson A G. A 7600-year sedimentary record of climatic instability in Dunnet Bay, North Scotland[J]. Marine Geology, 2013, 335: 100-113. doi: 10.1016/j.margeo.2012.10.014 [162] Hansom J D, Hall A M. Magnitude and frequency of extra-tropical North Atlantic cyclones: A chronology from cliff-top storm deposits[J]. Quaternary International, 2009, 195: 42-52. doi: 10.1016/j.quaint.2007.11.010 [163] Murray A S, Buylaert J-P, Thiel C. A luminescence dating intercomparison based on a Danish beach-ridge sand[J]. Radiation Measurements, 2015, 81: 32-38. doi: 10.1016/j.radmeas.2015.02.012 [164] Clemmensen L B, Murray A S. Luminescence dating of Holocene spit deposits: An example from Skagen Odde, Denmark[J]. Boreas, 2010, 39(1): 154-162. doi: 10.1111/j.1502-3885.2009.00110.x [165] Nielsen A, Murray A S, Pejrup M, et al. Optically stimulated luminescence dating of a Holocene beach ridge plain in Northern Jutland, Denmark[J]. Quaternary Geochronology, 2006, 1(4): 305-312. doi: 10.1016/j.quageo.2006.03.001 [166] Clemmensen L B, Murray A S. The termination of the last major phase of aeolian sand movement, coastal dunefields, Denmark[J]. Earth Surface Processes and Landforms, 2010, 31(7): 795-808. [167] Bjørnsen M, Clemmensen L B, Murray A S, et al. New evidence of the Littorina transgressions in the Kattegat: Optically stimulated luminescence dating of a beach ridge system on Anholt, Denmark[J]. Boreas, 2010, 37(1): 157-168. [168] Clemmensen L B, Glad A C, Kroon A. Storm flood impacts along the shores of micro-tidal inland seas: A morphological and sedimentological study of the Vesterlyng beach, the Belt Sea, Denmark[J]. Geomorphology, 2012, 253: 251-261. [169] Murray A S, Funder S. Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit: A test of accuracy[J]. Quaternary Science Reviews, 2003, 22(10): 1177-1183. [170] Madsen A T, Murray A S, Anderson T J, et al. Optically stimulated luminescence dating of young estuarine sediments: A comparison with 210Pb and 137Cs dating[J]. Marine Geology, 2005, 214(1): 251-268. [171] Clemmensen L B, Pedersen K, Murray A S, et al. A 7000-year record of coastal evolution, Vejers, SW Jutland, Denmark[J]. Bulletin of the Geological Society of Denmark, 2006, 53(1): 1-22. [172] Aagaard T, Orford J, Murray A S. Environmental controls on coastal dune formation; Skallingen Spit, Denmark[J]. Geomorphology, 2007, 83(1/2): 29-47. [173] Madsen A T, Murray A S, Andersen T J, et al. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene-Reflection of local sea level changes? The Wadden Sea, Denmark[J]. Marine Geology, 2007, 242(4): 221-233. doi: 10.1016/j.margeo.2007.03.001 [174] Madsen A T, Murray A S, Andersen T J, et al. Optical dating of young tidal sediments in the Danish Wadden Sea[J]. Quaternary Geochronology, 2007, 2(1/4): 89-94. [175] Madsen A T, Murray A S, Andersen T J, et al. Spatial and temporal variability of sediment accumulation rates on two tidal flats in Lister Dyb tidal basin, Wadden Sea, Denmark[J]. Earth Surface Processes and Landforms, 2010, 35(13): 1556-1572. doi: 10.1002/esp.1999 [176] Fruergaard M, Andersen T J, Johannessen P N, et al. Major coastal impact induced by a 1000-year storm event[J]. Scientific Reports, 2013, 3(1): 1051-1057. doi: 10.1038/srep01051 [177] Alappat L, Vink A, Tsukamoto S, et al. Establishing the Late Pleistocene-Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments[J]. Proceedings of the Geologists Association, 2010, 121(1): 43-54. doi: 10.1016/j.pgeola.2009.12.006 [178] Zhang J R, Tsukamoto S, Grube A, et al. OSL and 14C chronologies of a Holocene sedimentary record(Garding-2 core) from the German North Sea coast[J]. Boreas, 2014, 43(4): 856-868. doi: 10.1111/bor.12071 [179] Mauz B, Bungenstock F. How to reconstruct trends of late Holocene relative sea level: A new approach using tidal flat clastic sediments and optical dating[J]. Marine Geology, 2007, 237(3/4): 225-237. [180] Reimann T, Tsukamoto S, Harff J, et al. Reconstruction of Holocene coastal foredune progradation using luminescence dating: An example from the Wina barrier(southern Baltic Sea, NW Poland)[J]. Geomorphology, 2011, 132(1/2): 1-16. [181] Reimann T, Tsukamoto S. Dating the recent past(< 500 years) by post-IR IRSL feldspar: Examples from the North Sea and Baltic Sea coast[J]. Quaternary Geochronology, 2012, 10: 180-187. doi: 10.1016/j.quageo.2012.04.011 [182] Ballarini M, Wallinga J, Murray A S, et al. Optical dating of young coastal dunes on a decadal time scal[J]. Quaternary Science Reviews, 2003, 22(10): 1011-1017. [183] Ballarini M, Wallinga J, Wintle A G, et al. Analysis of equivalent-dose distributions for single grains of quartz from modern deposits[J]. Quaternary Geochronology, 2007, 2(1): 77-82. [184] Van Heteren S, Oost A P, Spek A J F, et al. Island-terminus evolution related to changing ebb-tidal-delta configuration: Texel, The Netherlands[J]. Marine Geology, 2006, 235(1/4): 19-33. [185] Mauz B, Baeteman C, Bungenstock F, et al. Optical dating of tidal sediments: Potentials and limits inferred from the North Sea coast[J]. Quaternary Geochronology, 2010, 5(6): 667-678. doi: 10.1016/j.quageo.2010.05.004 [186] Beerten K, Verbeeck K, Laloy E, et al. Electron spin resonance(ESR), optically stimulated luminescence(OSL) and terrestrial cosmogenic radionuclide(TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium[J]. Quaternary International, 2020, 556: 144-158. doi: 10.1016/j.quaint.2020.06.011 [187] Reimann T, Naumann M, Tsukamoto S, et al. Luminescence dating of coastal sediments from the Baltic Sea coastal barrier-spit Darss-Zingst, NE Germany[J]. Geomorphology, 2010, 122(3): 264-273. [188] Anjar J, Adrielsson L, Bennike O, et al. Palaeoenvironments in the southern Baltic Sea Basin during Marine Isotope Stage 3: A multi-proxy reconstruction[J]. Quaternary Science Reviews, 2012, 34: 81-92. doi: 10.1016/j.quascirev.2011.12.009 [189] Kostecki R, Moska P. Baltic Sea Holocene evolution based on OSL and radiocarbon dating: Evidence from a sediment core from the Arkona Basin(the southwestern Baltic Sea)[J]. Oceanological and Hydrobiological Studies, 2017, 46(3): 294-306. doi: 10.1515/ohs-2017-0031 [190] Kortekaas M, Murray A S, Sandgren P, et al. OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation[J]. Quaternary Geochronology, 2007, 2(1/4): 95-101. [191] Ušcinowicz S, Adamiec G, Bluszcz A, et al. Chronology of the last ice sheet decay on the southern Baltic area based on dating of glaciofluvial and ice-dammed lake deposits[J]. Geological Quarterly, 2019, 63(1): 192-207. [192] Bitinas A, Damušyté A, Hütt G, et al. Application of the OSL dating for stratigraphic correlation of Late Weichselian and Holocene sediments in the Lithuanian Maritime Region[J]. Quaternary Science Reviews, 2001, 20(5/9): 767-772. [193] Molodkov A. IR-OSL dating of uranium-rich deposits from the new late Pleistocene section at the Voka site, North-Eastern Estonia[J]. Quaternary Geochronology, 2007, 2(1/4): 208-215. [194] Federici P R, Pappalardo M. Evidence of marine isotope stage 5.5 highstand in Liguria(Italy) and its tectonic significance[J]. Quaternary International, 2006, 145(3): 68-77. [195] Andreucci S, Clemmensen L B, Murray A S, et al. Middle to Late Pleistocene coastal deposits of Alghero, Northwest Sardinia(Italy): Chronology and evolution[J]. Quaternary International, 2010, 222(1/2): 3-16. [196] Mauz B. Late Pleistocene records of littoral processes at the Tyrrhenian Coast(Central Italy): Depositional environments and luminescence chronology[J]. Quaternary Science Reviews, 1999, 18(10/11): 1173-1184. [197] Antonioli F, Kershaw S, Renda P, et al. Elevation of the last interglacial highstand in Sicily(Italy): A benchmark of coastal tectonics[J]. Quaternary International, 2006, 145/146(3): 3-18. [198] Mauz B, Buccheri G, Zöller L, et al. Middle to Upper Pleistocene morphostructural evolution of the NW-coast of Sicily: thermoluminescence dating and palaeontological-stratigraphical evaluations of littoral deposits[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 128(1/4): 269-285. [199] Balescu S, Dumas B, Guérémy P, et al. Thermoluminescence dating tests of Pleistocene sediments from uplifted marine shorelines along the southwest coastline of the Calabrian Peninsula(southern Italy)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 130(1/4): 25-41. [200] Bianca M, Catalano S, Guidi G de, et al. Luminescence chronology of Pleistocene marine terraces of Capo Vaticano peninsula(Calabria, Southern Italy)[J]. Quaternary International, 2011, 232(1/2): 114-121. [201] Nalin R, Lamothe M, Auclair M, et al. Chronology of the marine terraces of the Crotone Peninsula(Calabria, southern Italy) by means of infrared-stimulated luminescence(IRSL)[J]. Marine and Petroleum Geology, 2020, 122: 104645. doi: 10.1016/j.marpetgeo.2020.104645 [202] Polymeris G S, Kitis G. IRSL dating of a deep water core from Pylos, Greece, comparison to post IR blue OSL and TL dating results[J]. Mediterranean Archaeology and Archaeometry, 2011, 11(2): 107-120. [203] Vespremeanu-Stroe A, Preoteasa L, Zǎinescu F, et al. Formation of Danube delta beach ridge plains and signatures in morphology[J]. Quaternary International, 2016, 415: 268-285. doi: 10.1016/j.quaint.2015.12.060 [204] Chen J, Yang T B, Matishov G G, et al. A luminescence dating study of loess deposits from the Beglitsa section in the Sea of Azov, Russia[J]. Quaternary International, 2017, 478(1): 27-37. [205] Bateman M D, Murton J B. The chronostratigraphy of Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada[J]. Quaternary Science Reviews, 2006, 25(19): 2552-2568. [206] Neudorf C M, Lian O B, Walker I J, et al. Toward a luminescence chronology for coastal dune and beach deposits on Calvert Island, British Columbia central coast, Canada[J]. Quaternary Geochronology, 2015, 30: 275-281. doi: 10.1016/j.quageo.2014.12.004 [207] Eamer J B R, Shugar D H, Walker I J, et al. Late Quaternary landscape evolution in a region of stable postglacial relative sea levels, British Columbia central coast, Canada[J]. Boreas, 2017, 47(3): 738-753. [208] Huntley D J, Clague J J. Optical dating of tsunami-laid sands[J]. Quaternary Research, 1996, 46(2): 127-140. doi: 10.1006/qres.1996.0053 [209] Forman S L, Wintle A G, Thorleifson L H, et al. Thermoluminescence properties and age estimates for Quaternary raised marine sediments, Hudson Bay Lowland, Canada[J]. Canadian Journal of Earth Sciences, 1987, 24(12): 2405-2411. doi: 10.1139/e87-226 [210] Rémillard A M, Buylaert J-P, Murray A S, et al. Quartz OSL dating of late Holocene beach ridges from the Magdalen Islands(Quebec, Canada)[J]. Quaternary Geochronology, 2014, 30(Part B): 264-269. [211] Kaufman D S, Manley W F, Wolfe A P, et al. The Last Interglacial to Glacial Transition, Togiak Bay, southwestern Alaska[J]. Quaternary Research, 2001, 55(2): 190-202. doi: 10.1006/qres.2001.2214 [212] Jungner H, Korjonen K, Heikkinen O, et al. Luminescence and radiocarbon dating of a dune series at Cape Kiwanda, Oregon, USA[J]. Quaternary Science Reviews, 2001, 20(5): 811-814. [213] Peterson C D, Errol Stock E, Price D M, et al. Ages, distributions, and origins of upland coastal dune sheets in Oregon, USA[J]. Geomorphology, 2007, 91(1/2): 80-102. [214] Ollerhead J, Huntley D J, Nelson A R, et al. Optical dating of tsunami-laid sand from an Oregon coastal lake[J]. Quaternary Science Reviews, 2001, 20(18): 1915-1926. doi: 10.1016/S0277-3791(01)00043-9 [215] Berger G W, Burke R M, Carver G A, et al. Test of thermoluminescence dating with coastal sediments from northern California[J]. Chemical Geology: Isotope Geoscience Section, 1991, 87(1): 21-37. doi: 10.1016/0168-9622(91)90031-Q [216] Stevens T, Paull C K, Ussler W, et al. The timing of sediment transport down Monterey Submarine Canyon, offshore California[J]. Geological Society of America Bulletin, 2014, 126(1/2): 103-121. [217] Torres J, Kulp M, Fitzgerald D M, et al. Geomorphic and temporal evolution of a Mississippi delta flanking barrier island: Grand Isle, LA[J]. Marine Geology, 2020, 430: 106341. doi: 10.1016/j.margeo.2020.106341 [218] Blum M D, Carter A E, Tracy Z, et al. Middle holocene sea-level and evolution of the Gulf of Mexico Coast(USA)[J]. Journal of Coastal Research, 2002, 36(1): 65-80. [219] Rink W J, Pieper K D. Quartz thermoluminescence in a storm deposit and a welded beach ridge[J]. Quaternary Science Reviews, 2001, 20(5): 815-820. [220] López G I, Rink W J. Characteristics of the burial environment related to quartz SAR-OSL dating at St. Vincent Island, NW Florida, USA[J]. Quaternary Geochronology, 2007, 2(1/4): 65-70. [221] López G I, Rink W J. New quartz optical stimulated luminescence ages for beach ridges on the St. Vincent Island Holocene Strandplain, Florida, United States[J]. Journal of Coastal Research, 2008, 24(1A): 49-62. [222] Markewich H W, Pavich M J, Schultz A P, et al. Geochronologic evidence for a possible MIS-11 emergent barrier/beach-ridge in southeastern Georgia, USA[J]. Quaternary Science Reviews, 2013, 60: 49-75. doi: 10.1016/j.quascirev.2012.10.041 [223] Mallinson D, Burdette K, Mahan S A, et al. Optically stimulated luminescence age controls on Late Pleistocene and Holocene coastal Lithosomes, North Carolina, USA[J]. Quaternary Research, 2008, 69(1): 97-109. doi: 10.1016/j.yqres.2007.10.002 [224] Havholm K G, Ames D V, Whittecar G R, et al. Stratigraphy of Back-Barrier Coastal Dunes, Northern North Carolina and Southern Virginia[J]. Journal of Coastal Research, 2004, 20(4): 980-999. [225] Shawler J L, Hein C J, Obara C A, et al. The effect of coastal landform development on decadal-to millennial-scale longshore sediment fluxes: Evidence from the Holocene evolution of the central mid-Atlantic coast, USA[J]. Quaternary Science Reviews, 2021, 267: 107096. doi: 10.1016/j.quascirev.2021.107096 [226] Van Heteren S, Huntley D J, van Plassche O, et al. Optical dating of dune sand for the study of sea-level change[J]. Geology, 2000, 28(5): 411-414. doi: 10.1130/0091-7613(2000)28<411:ODODSF>2.0.CO;2 [227] Buynevich I V, Fitzgerald D M, Goble R J. A 1500 yr record of North Atlantic storm activity based on optically dated relict beach scarps[J]. Geology, 2007, 35(6): 543-546. doi: 10.1130/G23636A.1 [228] Pedoja K, Dumont J F, Lamothe M, et al. Plio-Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador[J]. Journal of South American Earth Sciences, 2006, 22(1/2): 1-21. [229] Pedoja K, Ortlieb L, Dumont J F, et al. Quaternary coastal uplift along the Talara Arc(Ecuador, Northern Peru) from new marine terrace data[J]. Marine Geology, 2006, 228(1/4): 73-91. [230] Guedes C C F, Giannini P C F, Sawakuchi A O, et al. Determination of controls on Holocene barrier progradation through application of OSL dating: The Ilha Comprida Barrier example, Southeastern Brazil[J]. Marine Geology, 2011, 285(1/4): 1-16. [231] Souza A -O, Filho A P. Late Holocene coastal dynamics, climate pulses and low terraces in the coast of the state of So Paulo, southeast, Brazil[J]. Journal of South American Earth Sciences, 2019, 92: 234-245. doi: 10.1016/j.jsames.2019.03.015 [232] Guedes C C F, Nascimento M G, Angulo R J, et al. Geological evidences as a guide to OSL dating interpretation and northern occurrence of MIS 7e barrier at southern Brazil[J]. Journal of South American Earth Sciences, 2019, 98: 102478. [233] Bogo M, Nascimento M G, Souza M C, et al. Spit-Inlet migration and storm-driven stacking at Praia de Leste Holocene barrier, southern Brazil[J]. Marine Geology, 2021, 442: 106637. doi: 10.1016/j.margeo.2021.106637 [234] Zular A, Sawakuchi A O, Guedes C C F, et al. Late Holocene intensification of colds fronts in southern Brazil as indicated by dune development and provenance changes in the São Francisco do Sul coastal barrier[J]. Marine Geology, 2013, 335: 64-77. doi: 10.1016/j.margeo.2012.10.006 [235] Thomas P J, Murray A S, Kjer K H, et al. Optically stimulated luminescence(OSL) dating of glacial sediments from Arctic Russia: Depositional bleaching and methodological aspects[J]. Boreas, 2010, 35(3): 587-599. [236] Möller P, Benediktsson Í Ö, Anjar J, et al. Data set on sedimentology, palaeoecology and chronology of Middle to Late Pleistocene deposits on the Taimyr Peninsula, Arctic Russia[J]. Data in Brief, 2019, 25: 104267. doi: 10.1016/j.dib.2019.104267 [237] Simms A R, Dewitt R, Kouremenos P, et al. A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces[J]. Quaternary Geochronology, 2011, 6(1): 50-60. doi: 10.1016/j.quageo.2010.06.004 [238] Simkins L M, Simms A R, Dewitt R. Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles[J]. Quaternary Science Reviews, 2013, 77: 141-155. doi: 10.1016/j.quascirev.2013.07.027 [239] Simkins L M. Antarctic raised beaches: Insight on geochronology, relative sea level, and coastal processes[D]. California: University of Catifornia, 2014. [240] Berger G W, Murray A S, Thomsen K J, et al. Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence[J]. Journal of Geophysical Research, 2010, 115(F3): F03003. [241] Berger G W. Surmounting luminescence age overestimation in Alaska-margin Arctic Ocean sediments by use of 'micro-hole' quartz dating[J]. Quaternary Science Reviews, 2011, 30(13/14): 1750-1769. [242] Berger G W, Polyak L. Testing the use of quartz 'micro-hole' photon-simulated luminescence for dating sediments from the central Lomonosov Ridge, Arctic Ocean[J]. Quaternary Geochronology, 2012, 11: 42-51. doi: 10.1016/j.quageo.2012.04.008 [243] Jakobsson M, Backman J, Murray A S, et al. Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates[J]. Geochemistry Geophysics Geosystems, 2003, 4(2): 10-16. [244] Armitage S J. Optically stimulated luminescence dating of Ocean Drilling Program core 658B: Complications arising from authigenic uranium uptake and lateral sediment movement[J]. Quaternary Geochronology, 2015, 30: 270-274. doi: 10.1016/j.quageo.2015.03.002 [245] Armitage S J, Pinder R C. Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores[J]. Quaternary Geochronology, 2017, 39(1): 124-130. [246] Chang Z H, Zhou L P. Evidence for provenance change in deep sea sediments of the Bengal Fan: A 7 million year record from IODP U1444A[J]. Journal of Asian Earth Sciences, 2019, 186: 104008. doi: 10.1016/j.jseaes.2019.104008 [247] Stokes S, Ingram S, Aitken M J, et al. Alternative chronologies for late Quaternary(Last Interglacial-Holocene) deep sea sediments via optical dating of silt-sized quartz[J]. Quaternary Science Reviews, 2003, 22(8/9): 925-941. [248] Olley J M, Deckker P de, Roberts R G, et al. Optical dating of deep-sea sediments using single grains of quartz: A comparison with radiocarbon[J]. Sedimentary Geology, 2004, 169(3/4): 175-189. [249] Singarayer J S, Baily R M. Further investigations of the quartz optically stimulated luminescence components using linear modulation[J]. Radiation Measurements, 2003, 37(4/5): 451-458.