Structure of karst water system and hydrological circulation characteristics of Lianghu Tunnel in Wuhan
-
摘要:
武汉市两湖隧道是国内最长、世界规模最大的城市湖底隧道, 其东湖段穿越岩溶区, 识别其岩溶水系统结构对隧道建设和运营安全具有重要意义。为查明区内岩溶水系统结构及水循环特征, 综合利用地质及水文地质勘探、水文地球化学分析等方法刻画了岩溶含水系统边界, 总结了岩溶发育规律, 识别了洞穴沉积物来源, 分析了岩溶水与孔隙水和地表水之间的水力联系, 探讨了岩溶水循环模式。结果表明: 研究区可划分为南北2个岩溶含水系统, 北段岩溶含水系统的岩溶发育程度强于南段岩溶含水系统, 北段和南段岩溶含水系统由断层带连通而具有统一的水力联系。洞穴沉积物主要来源于第四系残积层和洞穴围岩风化。第四系冲洪积层孔隙水与下伏岩溶水的水力联系较弱, 而第四系残积层孔隙水与下伏岩溶水的联系紧密。本研究利用多种技术方法精细刻画湖底隧道的岩溶水系统结构, 可服务于隧道工程的涌突水风险评价和安全施工。
Abstract:Among the underlake tunnels in the urban areas, the Lianghu Tunnel in Wuhan is the longest one of China and the largest one in the world.The East Lake part of this tunnel passes through the karst area. Identifying its karst water system structure is of great significance to the safety of tunnel construction and operation.To reveal the structure of the karst water system and the characteristics of the water cycle in the area, a comprehensive method of geological-hydrogeological investigation and hydrogeochemical analysis was conducted to characterize the boundary of the karst aquifer system, summarize the karst development law, identify the source of cave sediments, analyze the hydraulic connection between karst water, pore water and surface water, as well as discuss the hydrological circulation model of the karst water system.The results show that the study area can be divided into two karst aquifer systems, the north and the south.The karst development degree is stronger in the northern karst aquifer system than that in the southern karst aquifer system but has a unified hydraulic connection through the fault zone. The cave sediments mainly derived from Quaternary residual layers and the weathering of the cave surrounding rock.The pore water in the Quaternary alluvial-pluvial aquifer has a weak hydraulic connection with karst water, while the pore water in the Quaternary residual aquifer has a close hydraulic connection with karst water.The karst water system structures of underlake tunnels were characterized by a variety of techniques and methods, which helps the risk assessment of water inrush and the safe construction of tunnel engineering.
-
表 1 水化学与氘氢同位素统计平均值
Table 1. Statistical mean values of water chemistry and deuterium-hydrogen isotope
水样类型 钻孔编号 地层代号 取样深度/m 取样数量/件 K+ Na+ Mg 2+ Ca2+ Sr2+ Cl- SO42- HCO3- TDS Eh/mV δD/‰ δ18O/‰ ρB/(mg·L-1) 地表水 东湖水 — 湖面 5 4.9 16.9 8.8 35.6 0.2 18.4 30.6 108.2 172.5 194.0 -31.0 -4.4 孔隙水 ZK1-1 Qpel 12.0 1 1.3 19.3 13.3 86.5 0.4 16.0 18.1 257.6 258.6 -439.0 -40.9 -6.2 ZK3-1 Q3-4al+pl 13.1 2 1.5 61.6 21.9 77.6 0.5 11.2 24.3 455.0 431.1 -495.0 -44.7 -6.9 岩溶水 ZK1 P2m 58.9 5 1.3 15.3 12.3 103.5 0.4 12.8 15.7 354.1 346.4 232.0 -46.4 -7.1 ZK2 T1d2 33.9 3 1.4 17.0 14.7 84.9 0.5 8.5 13.8 340.9 322.1 285.0 -45.7 -7.2 ZK3 T1d2 34.0 4 1.2 33.3 19.6 110.4 2.4 9.0 13.3 468.3 440.9 297.0 -48.3 -7.5 ZK5 T1d3-4 56.1 5 1.0 14.3 13.9 74.6 1.7 9.5 12.3 371.1 322.5 283.0 -46.1 -7.3 注:所有水样时间均取自2021年6月;取样深度为距离湖底埋深 -
[1] Bakalowicz M. Karst groundwater: A challenge for new resources[J]. Hydrogeology Journal, 2005, 13(1): 148-160. doi: 10.1007/s10040-004-0402-9 [2] Goldscheider N. Methods in karst hydrogeology[M]. London: Taylor & Francis Group, 2014. [3] Li P Y, Wu J H, Tian R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37(2): 222-237. doi: 10.1007/s10230-017-0507-8 [4] Liu J, Wang H, Jin D W, et al. Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan Formation in the Pingdingshan Coalfield[J]. Environmental Earth Sciences, 2020, 79(6): 151. doi: 10.1007/s12665-020-8898-4 [5] Chen Y, Zhu S Y, Xiao S J. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts[J]. Natural Hazards, 2019, 99(2): 689-704. doi: 10.1007/s11069-019-03767-1 [6] 王泽君, 周宏, 齐凌轩, 等. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12): 4512-4523. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htmWang Z J, Zhou H, Qi L X, et al. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M system in Three Gorges Area[J]. Earth Science, 2020, 45(12): 4512-4523(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012015.htm [7] 罗明明. 南方岩溶水循环的物理机制及数学模型研究[D]. 武汉: 中国地质大学(武汉), 2017.Luo M M. The physical mechanism and mathematical model of karst water circulation: A case study of the Xiangxi River karst basin, South China[D]. Wuhan: China University of Geosciences(Wuhan), 2017(in Chinese with English abstract). [8] 王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉: 中国地质大学(武汉), 2016.Wang J L. Analysis and identification of hierarchical groundwater flow system in Jinan[D]. Wuhan: China University of Geosciences(Wuhan), 2016(in Chinese with English abstract). [9] 曾斌, 陈植华, 邵长杰, 等. 基于地下水流系统理论的岩溶隧道涌突水来源及路径分析[J]. 地质科技通报, 2022, 41(1): 99-108. doi: 10.19509/j.cnki.dzkq.2022.0006Zeng B, Chen Z H, Shao C J, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 99-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0006 [10] Luo M M, Chen J, Jakada H, et al. Identifying and predicting karst water inrush in a deep tunnel, South China[J]. Engineering Geology, 2022, 305: 106716. doi: 10.1016/j.enggeo.2022.106716 [11] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [12] 武汉市测绘研究院. 武汉城市地质[M]. 武汉: 中国地质大学出版社, 2018.Wuhan Geomatics Institute. Wuhan urban geology[M]. Wuhan: China University of Geosciences Press, 2018(in Chinese). [13] 邓志民, 张翔, 潘国艳. 武汉市大气降水的氢氧同位素变化特征[J]. 长江科学院院报, 2016, 33(7): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201607003.htmDeng Z M, Zhang X, Pan G Y, et al. Variations of hydrogen and oxygen isotopes in meteoric precipitation in Wuhan, China[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(7): 12-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201607003.htm [14] 蒲俊兵. 重庆岩溶地下水氢氧稳定同位素地球化学特征[J]. 地球学报, 2013, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htmPu J B. Hydrogen and oxygen isotope geochemistry of karst groundwater in Chongqing[J]. Acta Geoscientica Sinica, 2013, 34(6): 713-722(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm [15] 王增银, 刘娟, 崔银祥, 等. 延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用[J]. 水文地质工程地质, 2003, 30(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200302004.htmWang Z Y, Liu J, Cui Y X, et al. Distribution characteristics of Sr/Mg, Sr/Ca and applications in Yanhe spring karst water system[J]. Hydrogeology & Engineering Geology, 2003, 30(2): 15-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200302004.htm [16] 黄奇波, 覃小群, 唐建生, 等. 习水地区不同类型水主要离子及Sr2+、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)组成特征[J]. 桂林理工大学学报, 2012, 32(4): 505-511. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201204010.htmHuang Q B, Qin X Q, Tang J S, et al. Composition characteristics of major ions and Sr2+, ρ(Sr)/ρ(Ca), ρ(Sr)/ρ(Mg) value in different types of water in Xishui[J]. Journal of Guilin University of Technology, 2012, 32(4): 505-511(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201204010.htm