Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress, challenges, and prospects for future research
-
摘要: 地下水型陆地植被具有重要的生态服务功能,但正遭受严重威胁,亟需在水资源管理中予以关注和保护。准确识别地下水型陆地植被是其管理和保护的前提。水稳定同位素方法是识别地下水型陆地植被的唯一直接方法,其中:①直接比较法只能获得植物对地下水利用的定性信息,但目前的应用最为广泛;②同位素混合模型能定量评估植物对地下水的依赖性,近期随贝叶斯模型的引入取得了较大进展。当前,植物对地下水利用的时空异质性增加了基于水稳定同位素的地下水型陆地植被的识别难度,还限制了小尺度上的研究成果向大尺度上的拓展;部分植物以间接方式利用地下水,对地下水型陆地植被的识别造成了困扰;根系吸水过程中的同位素分馏和同一植株内木质部水同位素组成的时空异质性常使植物样品的代表性受到质疑;采集到具有代表性的地下水和土壤样品也是当前面临的一个主要挑战。为应对上述挑战,未来应加强3个方面的研究:①研发植物木质部水同位素组成的原位在线连续观测技术,提升基于水稳定同位素的地下水型陆地植被识别的时空分辨率;②借助控制性的同位素标记实验,精细刻画地下水-土壤-植物体系内同位素体的迁移和分馏过程;③将同位素观测与具有物理学意义的生态水文模型相耦合,提高定量评估的分辨率和降低不确定性,探索解决时空异质性和升尺度难题的途径。Abstract: As one of the major types of groundwater dependent ecosystems, groundwater dependent terrestrial vegetation (GDTV) has a variety of ecological service functions.Protection of GDTV is an important criterion in sustainable water resources management, particularly when it is being threatened globally by degradation due to the over-exploitation of groundwater and surface water.Identifying GDTV is the first requisite step to managing and protecting it.While GDTV has been identified at large scales using the White method, water balance method, and satellite-based approaches, only stable isotope techniques can provide direct means for identifying GDTV.The stable isotopes approach can be further divided into direct inference approach and mixing model approach.Though only qualitatively identifying GDTV, the direct inference approach is still more prevalent than the mixing model approach.In recent years, with the application of Bayesian mixing models, progress has been made in quantifying the dependency of GDTV on groundwater by using mixing model approach.However, many conceptual and methodological challenges remain.The first one is how representative an individual tree/plant studies are for larger-scale systems, given the spatial and temporal heterogeneity of groundwater use pattern by GDTV, which also makes it difficult to applying our observational results at small-scale to understand catchment-or landscape-scale phenomena.Secondly, it has been found that many plants might use groundwater in an indirect way, which distorts the identifying of GDTV.The third main challenge is how the isotopic fractionation at soil-root interface and the spatial-temporal variation in xylem isotopic signatures within a plant can inform endmember determination.Furthermore, obtaining representative groundwater and soil water samples is also challenging.In the coming years, efforts should be made towards:(1) developing novel methods for in situ, online, and continuous isotopic measurements in xylem water, to help to gather isotope data at higher temporal and spatial resolutions; (2) conducting extensive isotopic labelling experiments with known boundary conditions, to facilitate a more detailed characterization of the flow and fractionation of isotopologues in the groundwater-soil-vegetation system; and (3) developing approaches coupling physically based ecohydrological models and isotopic observation, to provide root water uptake profiles with high spatial resolution andlower uncertainty.
-
[1] Barbeta A, Peñuelas J.Relative contribution of groundwater to plant transpiration estimated with stable isotopes[J].Scientific reports, 2017, 7(1):10580. doi: 10.1038/s41598-017-09643-x [2] Eamus D, Froend R.Groundwater-dependent ecosystems:The where, what and why of GDEs[J].Australian Journal of Botany, 2006, 54(2):91-96. doi: 10.1071/BT06029 [3] Eamus D, Froend R, Loomes R, et al.A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation[J].Australian Journal of Botany, 2006, 54(2):97-114. doi: 10.1071/BT05031 [4] Eamus D, Zolfaghar S, Villalobos-Vega R, et al.Groundwater-dependent ecosystems:Recent insights from satellite and field-based studies[J].Hydrology and Earth System Sciences, 2015, 19(10):4229-4256. doi: 10.5194/hess-19-4229-2015 [5] Evaristo J, Mcdonnell J J.Prevalence and magnitude of groundwater use by vegetation:A global stable isotope meta-analysis[J].Scientific Reports, 2017, 7:44110. doi: 10.1038/srep44110 [6] Eamus D, Boulain N, Cleverly J, et al.Global change-type drought-induced tree mortality:Vapor pressure deficit is more important than temperature per se in causing decline in tree health[J].Ecology Evolution, 2013, 3(8):2711-2729. doi: 10.1002/ece3.664 [7] Gou S, Gonzales S, Miller G R.Mapping potential groundwater-dependent ecosystems for sustainable management[J].Ground Water, 2015, 53(1):99-110. https://www.ncbi.nlm.nih.gov/pubmed/24571583 [8] Fahle M, Dietrich O.Estimation of evapotranspiration using diurnal groundwater level fluctuations:Comparison of different approaches with groundwater lysimeter data[J].Water Resources Research, 2014, 50(1):273-286. doi: 10.1002/2013WR014472 [9] Wang P, Grinevsky S O, Pozdniakov S P, et al.Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments[J].Journal of hydrology, 2014, 519:2289-2300. doi: 10.1016/j.jhydrol.2014.09.087 [10] Csáfordi P, Szabó A, Balog K, et al.Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain:A statistical approach[J].Environmental Earth Sciences, 2017, 76(20):675. doi: 10.1007/s12665-017-7002-1 [11] Doody T M, Holland K L, Benyon R G, et al.Effect of groundwater freshening on riparian vegetation water balance[J].Hydrological Processes, 2009, 23(24):3485-3499. doi: 10.1002/hyp.7460 [12] Batelaan O, De Smedt F.GIS-based recharge estimation by coupling surface-subsurface water balances[J].Journal of Hydrology, 2007, 337(3/4):337-355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb19645d41b9a61b9b4253a9e07a5f78 [13] Contreras S, Jobbágy E G, Villagra P E, et al.Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina[J].Journal of Hydrology, 2011, 397(1/2):10-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0682ea21acf2555bd5423cc447467fe [14] Gribovszki Z, Kalicz P, Szilágyi J, et al.Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations[J].Journal of Hydrology, 2008, 349(1/2):6-17. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211138177/ [15] Post V E, Von Asmuth J R.Hydraulic head measurements:New technologies, classic pitfalls[J].Hydrogeology Journal, 2013, 21(4):737-750. doi: 10.1007/s10040-013-0969-0 [16] Thorburn P J, Walker G R, Woods P H.Comparison of diffuse discharge from shallow water tables in soils and salt flats[J].Journal of Hydrology, 1992, 136(1/4):253-274. https://ui.adsabs.harvard.edu/abs/1992JHyd..136..253T/abstract [17] Thorburn P J, Hatton T J, Walker G R.Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests[J].Journal of Hydrology, 1993, 150(2/4):563-587. https://www.sciencedirect.com/science/article/pii/002216949390126T [18] Ehleringer J R, Dawson T E.Water uptake by plants:Perspectives from stable isotope compositon[J].Plant Cell and Environment, 1992, 15(9):1073-1082. doi: 10.1111/j.1365-3040.1992.tb01657.x [19] Zhou Y, Wenninger J, Yang Z, et al.Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China:A synthesis[J].Hydrology and Earth System Sciences, 2013, 17(7):2435-2447. doi: 10.5194/hess-17-2435-2013 [20] White J W C, Cook E R, Lawrence J R, et al.The D/H ratios of sap in trees:Implications for water sources and tree ring D/H ratios[J].Geochimica et Cosmochimica Acta, 1985, 49(1):237-246. doi: 10.1016/0016-7037(85)90207-8 [21] Dawson T E, Ehleringer J R.Isotopic enrichment of water in the "woody" tissues of plants:Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose[J].Geochimica et Cosmochimica Acta, 1993, 57(14):3487-3492. doi: 10.1016/0016-7037(93)90554-A [22] Mensforth L J, Thorburn P J, Tyerman S D, et al.Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater[J].Oecologia, 1994, 100(1/2):21-28. doi: 10.1007-BF00317126/ [23] Dawson T E, Ehleringer J R.Streamside trees that do not use stream water[J].Nature, 1991, 350(6316):335-337. doi: 10.1038/350335a0 [24] Busch D E, Ingraham N L, Smith S D.Water uptake in woody riparian phreatophytes of the Southwestern United States:A stable isotope study[J].Ecological Applications, 1992, 2(4):450-459. doi: 10.2307/1941880 [25] Lamontagne S, Cook P G, O'grady A, et al.Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia)[J].Journal of Hydrology, 2005, 310(1/4):280-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d60edfeae12d2289e0414c9265ad8bb [26] Querejeta J I, Estrada-Medina H, Allen M F, et al.Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate[J].Oecologia, 2007, 152(1):26-36. doi: 10.1007/s00442-006-0629-3 [27] Orellana F, Verma P, Loheide S P, et al.Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J].Reviews of Geophysics, 2012, 50:RG3003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcb71745073652b93c677eca3fb11166 [28] Phillips D L, Gregg J W.Source partitioning using stable isotopes:Coping with too many sources[J].Oecologia, 2003, 136(2):261-269. doi: 10.1007/s00442-003-1218-3 [29] Yang Q, Xiao H, Zhao L, et al.Stable isotope techniques in plant water sources:A review[J].Sciences in Cold and Arid Regions, 2010, 2(2):112-122. http://cn.bing.com/academic/profile?id=c7d14fc02c21eb139f912feda01c69bd&encoded=0&v=paper_preview&mkt=zh-cn [30] Rothfuss Y, Javaux M.Reviews and syntheses:Isotopic approaches to quantify root water uptake:A review and comparison of methods[J].Biogeosciences, 2017, 14:2199. doi: 10.5194/bg-14-2199-2017 [31] Phillips D L, Gregg J W.Uncertainty in source partitioning using stable isotopes[J].Oecologia, 2001, 127(2):171-179. doi: 10.1007/s004420000578 [32] Evaristo J, Mcdonnell J J, Clemens J.Plant source water apportionment using stable isotopes:A comparison of simple linear, two-compartment mixing model approaches[J].Hydrological Processes, 2017, 31(21):3750-3758. doi: 10.1002/hyp.11233 [33] Stock B C, Jackson A L, Ward E J, et al.Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J].Peer J, 2018, 6:e5096. doi: 10.7717/peerj.5096 [34] Bertrand G, Masini J, Goldscheider N, et al.Determination of spatiotemporal variability of tree water uptake using stable isotopes (δ18O, δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland[J].Ecohydrology & Hydrobiology, 2014, 7(2):319-333. doi: 10.1002/eco.1347 [35] Schwendenmann L, Pendall E, Sanchez-Bragado R, et al.Tree water uptake in a tropical plantation varying in tree diversity:Interspecific differences, seasonal shifts and complementarity[J].New Phytologist, 2015, 8(1):1-12. doi: 10.1002/eco.1479/full [36] Li J, Yu B, Zhao C, et al.Physiological and morphological responses of Tamarixramosissima and Populuseuphratica to altered groundwater availability[J].Tree physiology, 2012, 33(1):57-68. https://pubmed.ncbi.nlm.nih.gov/23243028/ [37] Xu G Q, Li Y, Xu H.Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs, Tamarixramosissima and Haloxylonammodendron, with different rooting patterns[J].Ecological Research, 2011, 26(6):1071-1080. doi: 10.1007/s11284-011-0858-8 [38] Imada S, Taniguchi T, Acharya K, et al.Vertical distribution of fine roots of Tamarixramosissima in an arid region of southern Nevada[J].Journal of Arid Environments, 2013, 92:46-52. doi: 10.1016/j.jaridenv.2013.01.006 [39] 彭丽萍, 戴岳, 师庆东.新疆准东荒漠区5种典型植物水分来源[J].干旱区研究, 2018, 35(5):1146-1152. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201805018 [40] 马辉英, 杨晓东, 吕光辉, 等.新疆艾比湖湿地自然保护区荒漠优势种体内的水分来源[J].生态学报, 2017, 37(3):829-840. http://d.old.wanfangdata.com.cn/Periodical/stxb201703012 [41] Snyder K A, Williams D G.Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona[J].Agricultural and Forest Meteorology, 2000, 105(1):227-240. https://core.ac.uk/display/101243184 [42] Smith S D, Wellington A B, Nachlinger J L, et al.Functional responses of riparian vegetation to streamflow diversion in the Eastern Sierra Nevada[J].Ecological Applications, 1991, 1(1):89-97. doi: 10.2307/1941850 [43] Groom P.Groundwater-dependency and water relations of four Myrtaceae shrub species during a prolonged summer drought[J].Journal of the Royal Society of Western Australia, 2003, 86:31-40. https://www.researchgate.net/publication/242208009_Groundwater-dependency_and_water_relations_of_four_Myrtaceae_shrub_species_during_a_prolonged_summer_drought [44] Nie Y-P, Chen H-S, Wang K-L, et al.Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China[J].Journal of Hydrology, 2012, 420:264-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54c101a1745dd979857cb50445430a7d [45] Barbeta A, Mejía-Chang M, Ogaya R, et al.The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest[J].Global Change Biology, 2015, 21(3):1213-1225. doi: 10.1111/gcb.12785 [46] Singer M B, Sargeant C I, Piégay H, et al.Floodplain ecohydrology:Climatic, anthropogenic, and localphysical controls on partitioning of water sources to riparian trees[J].Water Resources Research, 2014, 50(5):4490-4513. doi: 10.1002/2014WR015581 [47] Moore G W, Li F, Kui L, et al.Flood water legacy as a persistent source for riparian vegetation during prolonged drought:An isotopic study of Arundo donax on the Rio Grande[J].Ecohydrology, 2016, 9(6):909-917. doi: 10.1002/eco.1698 [48] Snyder K, Williams D.Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite)[J].Functional Ecology, 2003, 17(3):363-374. doi: 10.1046-j.1365-2435.2003.00739.x/ [49] Nippert J B, Butler J J, Kluitenberg G J, et al.Patterns of Tamarix water use during a record drought[J].Oecologia, 2010, 162(2):283-292. doi: 10.1007/s00442-009-1455-1 [50] Snyder K A, Williams D G.Root allocation and water uptake patterns in riparian tree saplings:Responses to irrigation and defoliation[J].Forest Ecology and Management, 2007, 246(2/3):222-231. https://www.sciencedirect.com/science/article/pii/S0378112707003131 [51] Penna D, Hopp L, Scandellari F, et al.Ideas and perspectives:Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes-challenges and opportunities from an interdisciplinary perspective[J].Biogeosciences, 2018, 15(21):6399-6415. doi: 10.5194/bg-15-6399-2018 [52] Muñoz M, Squeo F, Leon M, et al.Hydraulic lift in three shrub species from the Chilean coastal desert[J].Journal of Arid Environments, 2008, 72(5):624-632. doi: 10.1016/j.jaridenv.2007.09.006 [53] Armas C, Padilla F M, Pugnaire F I, et al.Hydraulic lift and tolerance to salinity of semiarid species:Consequences for species interactions[J].Oecologia, 2010, 162(1):11-21. doi: 10.1007/s00442-009-1447-1 [54] Prieto I, Kikvidze Z, Pugnaire F I.Hydraulic lift:Soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss[J].Plant Soil, 2010, 329(1/2):447-456. doi: 10.1007%2Fs11104-009-0170-3 [55] Brooksbank K, Veneklaas E J, White D A, et al.The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species[J].Tree Physiology, 2011, 31(6):649-658. doi: 10.1093/treephys/tpr052 [56] Sardans J, Peñuelas J.Hydraulic redistribution by plants and nutrient stoichiometry:Shifts under global change[J].Ecohydrology & Hydrobiology, 2014, 7(1):1-20. doi: 10.1002/eco.1459 [57] Sprenger M, Leistert H, Gimbel K, et al.Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes[J].Reviews of Geophysics, 2016, 54(3):674-704. doi: 10.1002/2015RG000515 [58] Dawson T E.Hydraulic lift and water use by plants:Implications for water balance, performance and plant-plant interactions[J].Oecologia, 1993, 95(4):565-574. doi: 10.1007/BF00317442 [59] Emerman S H, Dawson T E.Hydraulic lift and its influence on the water content of the rhizosphere:An example from sugar maple, Acer saccharum[J].Oecologia, 1996, 108(2):273-278. doi: 10.1007/BF00334651 [60] Caldwell M M, Dawson T E, Richards J H.Hydraulic lift:Consequences of water efflux from the roots of plants[J].Oecologia, 1998, 113(2):151-161. doi: 10.1007/s004420050363 [61] Filella I, Peñuelas J.Indications of hydraulic lift by Pinus halepensis and its effects on the water relations of neighbour shrubs[J].Biologia Plantarum, 2003, 47(2):209-214. doi: 10.1023%2FB%3ABIOP.0000022253.08474.fd [62] Sun Z, Long X, Ma R.Water uptake by saltcedar (Tamarixramosissima) in a desert riparian forest:Responses to intra-annual water table fluctuation[J].Hydrological Processes, 2016, 30(9):1388-1402. doi: 10.1002/hyp.10688 [63] Zhu C G, Li W H, Chen Y N, et al.Characteristics of water physiological integration and its ecological significance for Populuseuphratica young ramets in an extremely drought environment[J].Journal of Geophysical Research:Atmospheres, 2018, 123(10):5657-5666. doi: 10.1029/2018JD028396 [64] Lin G H, Sl S L D, Ehleringer J R, et al.Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants[C]//Ehleringer J R.Stable Isotopes&Plant Carbon-Water Relations.1993: 497-510. [65] Ellsworth P Z, Williams D G.Hydrogen isotope fractionation during water uptake by woody xerophytes[J].Plant and Soil, 2007, 291(1/2):93-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eab41a53f7ea4061aa47d2f5b4d9524 [66] Vargas A I, Schaffer B, Yuhong L, et al.Testing plant use of mobile vs immobile soil water sources using stable isotope experiments[J].New Phytologist, 2017, 215(2):582-594. doi: 10.1111/nph.14616 [67] Ubierna N, Kumar A S, Cernusak L A, et al.Storage and transpiration have negligible effects on δ13C of stem CO2 efflux in large conifer trees[J].Tree Physiology, 2009, 29(12):1563-1574. doi: 10.1093/treephys/tpp089 [68] Meinzer F, Brooks J, Domec J C, et al.Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques[J].Plant, Cell Environment, 2006, 29(1):105-114. doi: 10.1111/j.1365-3040.2005.01404.x [69] Waring R, Running S.Sapwood water storage:Its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir[J].Plant, Cell Environment, 1978, 1(2):131-140. doi: 10.1111/j.1365-3040.1978.tb00754.x [70] Treydte K, Boda S, Graf Pannatier E, et al.Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring:Source water versus needle water enrichment[J].New Phytologist, 2014, 202(3):772-783. doi: 10.1111/nph.12741 [71] Yang J, Chen H, Nie Y, et al.Spatial variability of shallow soil moisture and its stable isotope values on a karst hillslope[J].Geoderma, 2016, 264:61-70. doi: 10.1016/j.geoderma.2015.10.003 [72] Benettin P, Volkmann T H, Von Freyberg J, et al.Effects of climatic seasonality on the isotopic composition of evaporating soil waters[J].Hydrology and Earth System Sciences, 2018, 22:2881-2890. doi: 10.5194/hess-22-2881-2018 [73] Cernusak L A, Farquhar G D, Pate J S.Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus[J].Tree physiology, 2005, 25(2):129-146. doi: 10.1093/treephys/25.2.129 [74] Zhao L, Wang L, Cernusak L A, et al.Significant difference in hydrogen isotope composition between xylem and tissue water in Populuseuphratica[J].Plant, Cell Environment, 2016, 39(8):1848-1857. doi: 10.1111/pce.12753 [75] Volkmann T H, Kühnhammer K, Herbstritt B, et al.A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy[J].Plant, Cell Environment, 2016, 39(9):2055-2063. doi: 10.1111/pce.12725 [76] Steppe K, Sterck F, Deslauriers A.Diel growth dynamics in tree stems:Linking anatomy and ecophysiology[J].Trends in Plant Science, 2015, 20(6):335-343. doi: 10.1016/j.tplants.2015.03.015 [77] Volkmann T H, Haberer K, Gessler A, et al.High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface[J].New Phytologist, 2016, 210(3):839-849. doi: 10.1111/nph.13868 [78] Scheliga B, Tetzlaff D, Nuetzmann G, et al.Groundwater isoscapes in a montane headwater catchment show dominance of well-mixed storage[J].Hydrological Processes, 2017, 31(20):3504-3519. doi: 10.1002/hyp.11271 [79] Uhlenbrook S, Hoeg S.Quantifying uncertainties in tracer-based hydrograph separations:A case study for two-, three-and five-component hydrograph separations in a mountainous catchment[J].Hydrological Processes, 2003, 17(2):431-453. doi: 10.1002/hyp.1134 [80] Jasechko S, Perrone D, Befus K M, et al.Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination[J].Nature Geoscience, 2017, 10(6):425. doi: 10.1038/ngeo2943 [81] Barnes C, Allison G.The distribution of deuterium and 18O in dry soils:1.Theory[J].Journal of Hydrology, 1983, 60(1/4):141-156. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201803006 [82] Oerter E, Finstad K, Schaefer J, et al.Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals[J].Journal of Hydrology, 2014, 515:1-9. doi: 10.1016/j.jhydrol.2014.04.029 [83] Oshun J, Dietrich W E, Dawson T E, et al.Dynamic, structured heterogeneity of water isotopes inside hillslopes[J].Water Resources Research, 2016, 52(1):164-189. doi: 10.1002/2015WR017485 [84] Gaj M, Kaufhold S, Koeniger P, et al.Mineral mediated isotope fractionation of soil water[J].Rapid Communications in Mass Spectrometry, 2017, 31(3):269-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a3577df6953b7367628a6b39a7e4474 [85] Landon M, Delin G, Komor S, et al.Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone[J].Journal of Hydrology, 1999, 224(1/2):45-54. https://www.academia.edu/14673520/Comparison_of_the_stable-isotopic_composition_of_soil_water_collected_from_suction_lysimeters_wick_samplers_and_cores_in_a_sandy_unsaturated_zone [86] Koeniger P, Marshall J D, Link T, et al.An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2011, 25(20):3041-3048. doi: 10.1002/rcm.5198 [87] Orlowski N, Pratt D L, Mcdonnell J J.Intercomparison of soil pore water extraction methods for stable isotope analysis[J].Hydrological Processes, 2016, 30(19):3434-3449. doi: 10.1002/hyp.10870 [88] Gaj M, Kaufhold S, Mcdonnell J J.Potential limitation of cryogenic vacuum extractions and spiked experiments[J].Rapid Communications in Mass Spectrometry, 2017, 31(9):821-823. doi: 10.1002/rcm.7850 [89] Thoma M, Frentress J, Tagliavini M, et al.Comparison of pore water samplers and cryogenic distillation under laboratory and field conditions for soil water stable isotope analysis[J].Isotopes in Environmental Health Studies, 2018, 54(4):403-417. doi: 10.1080/10256016.2018.1437034 [90] Sprenger M, Tetzlaff D, Buttle J, et al.Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water[J].Hydrological Processes, 2018, 32(12):1720-1737. doi: 10.1002/hyp.13135 [91] West A G, Patrickson S J, Ehleringer J R.Water extraction times for plant and soil materials used in stable isotope analysis[J].Rapid Communications in Mass Spectrometry, 2006, 20(8):1317-1321. doi: 10.1002/rcm.2456 [92] Newberry S, Nelson D, Kahmen A.Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis[J].Ecohydrology & Hydrobiology, 2017, 10(8):e1892. doi: 10.1002/eco.1892 [93] Rothfuss Y, Biron P, Braud I, et al.Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions[J].Hydrological Processes, 2010, 24(22):3177-3194. doi: 10.1002/hyp.7743 [94] Moreira M Z, Sternberg L D S L, Nepstad D C.Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon:An isotopic approach[J].Plant and Soil, 2000, 222(1):95-107. doi: 10.1023/A:1004773217189 [95] Pangle L A, Klaus J, Berman E S, et al.A new multisource and high-frequency approach to measuring δ2H and δ18O in hydrological field studies[J].Water Resources Research, 2013, 49(11):7797-7803. doi: 10.1002/2013WR013743 [96] Von Freyberg J, Studer B, Kirchner J W.A lab in the field:High-frequency analysis of water quality and stable isotopes in stream water and precipitation[J].Hydrology Earth System Sciences, 2017, 21:1721-1739. doi: 10.5194/hess-21-1721-2017 [97] Herbstritt B, Gralher B, Weiler M.Continuous in situ measurements of stable isotopes in liquid water[J].Water Resources Research, 2012, 48(3):3601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011WR011369 [98] Gaj M, Beyer M, Koeniger P, et al.In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments:A soil water balance[J].Hydrol.Earth Syst.Sci., 2016, 20(2):715-731. doi: 10.5194/hess-20-715-2016 [99] Gangi L, Rothfuss Y, Ogée J, et al.A new method for in situ measurements of oxygen isotopologues of soil water and carbon dioxide with high time resolution[J].Vadose Zone Journal, 2015, 14(8):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8502c0d567848fa63112525715a2f1e0 [100] Oerter E J, Bowen G.In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems[J].Ecohydrology & Hydrobiology, 2017, 10(4):e1841. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/eco.1841 [101] Rothfuss Y, Vereecken H, Brüggemann N.Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy[J].Water Resources Research, 2013, 49(6):3747-3755. doi: 10.1002/wrcr.20311 [102] Sprenger M, Herbstritt B, Weiler M.Established methods and new opportunities for pore water stable isotope analysis[J].Hydrological Processes, 2015, 29(25):5174-5192. doi: 10.1002/hyp.10643 [103] Volkmann T H M, Weiler M.Continual in situ monitoring of pore water stable isotopes in the subsurface[J].Hydrology Earth System Sciences, 2014, 18(5):1819-1833. doi: 10.5194/hess-18-1819-2014 [104] Martín-Gómez P, Barbeta A, Voltas J, et al.Isotope-ratio infrared spectroscopy:A reliable tool for the investigation of plant-water sources?[J].New Phytologist, 2015, 207(3):914-927. doi: 10.1111/nph.13376 [105] West A, Goldsmith G, Matimati I, et al.Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS)[J].Rapid Communications in Mass Spectrometry, 2011, 25(16):2268-2274. doi: 10.1002/rcm.5126 [106] West A G, Goldsmith G R, Brooks P D, et al.Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters[J].Rapid Communications in Mass Spectrometry, 2010, 24(14):1948-1954. doi: 10.1002/rcm.4597 [107] Koeniger P, Leibundgut C, Link T, et al.Stable isotopes applied as water tracers in column and field studies[J].Organic Geochemistry, 2010, 41(1):31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98d4b5ae6deb4ff3926725baf6d6dcd1 [108] Bachmann D, Gockele A, Ravenek J M, et al.No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands[J].Plos One, 2015, 10(1):e0116367. doi: 10.1371/journal.pone.0116367 [109] Stahl C, Hérault B, Rossi V, et al.Depth of soil water uptake by tropical rainforest trees during dry periods:Does tree dimension matter?[J].Oecologia, 2013, 173(4):1191-1201. doi: 10.1007/s00442-013-2724-6 [110] Kulmatiski A, Beard K H, Verweij R J T, et al.A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna[J].New Phytologist, 2010, 188(1):199-209. doi: 10.1111/j.1469-8137.2010.03338.x [111] Grossiord C, Gessler A, Granier A, et al.Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation[J].Journal of Hydrology, 2014, 519:3511-3519. doi: 10.1016/j.jhydrol.2014.11.011 [112] Beyer M, Koeniger P, Gaj M, et al.A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments[J].Journal of Hydrology, 2016, 533:627-643. doi: 10.1016/j.jhydrol.2015.12.037 [113] Priyadarshini K V R, Prins H H T, De Bie S, et al.Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J].Ecohydrology, 2016, 9(2):218-228. doi: 10.1002/eco.1624 [114] Cook P G, O'grady A P.Determining soil and ground water use of vegetation from heat pulse, water potential and stable isotope data[J].Oecologia, 2006, 148(1):97. doi: 10.1007/s00442-005-0353-4 [115] Rothfuss Y, Braud I, Le Moine N, et al.Factors controlling the isotopic partitioning between soil evaporation and plant transpiration:Assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions[J].Journal of Hydrology, 2012, 442/443:75-88. doi: 10.1016/j.jhydrol.2012.03.041 [116] Mazzacavallo M G, Kulmatiski A.Modelling water uptake provides a new perspective on grass and tree coexistence[J].Plos One, 2015, 10(12):e0144300. doi: 10.1371/journal.pone.0144300 [117] Ogle K, Wolpert R L, Reynolds J F.Reconstructing plant root area and water uptake profiles[J].Ecology, 2004, 85(7):1967-1978. doi: 10.1890/03-0346 [118] Couvreur V, Vanderborght J, Javaux M.A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach[J].Hydrology Earth System Sciences, 2012, 16(8):2957-2971. doi: 10.5194/hess-16-2957-2012 [119] Braud I, Bariac T, Gaudet J P, et al.SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO andH218O) transport model for bare soil:Part I.Model description and first verifications[J].Journal of Hydrology, 2005, 309(1):277-300. https://www.sciencedirect.com/science/article/pii/S0022169404005876 [120] Haverd V, Cuntz M.Soil-Litter-Iso:A one-dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction[J].Journal of Hydrology, 2010, 388(3):438-455. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216016679/ [121] Meunier F, Rothfuss Y, Bariac T, et al.Measuring and modeling hydraulic lift of loliummultiflorum using stable water isotopes[J].Vadose Zone Journal, 2018, 17(1):160134. doi: 10.2136/vzj2016.12.0134 [122] Singleton M J, Sonnenthal E L, Conrad M E, et al.Multiphase reactive transport modeling of seasonal infiltration events and stable isotope fractionation in unsaturated zone pore water and vapor at the Hanford Site[J].Vadose Zone Journal, 2004, 3(3):775-785. doi: 10.2136/vzj2004.0775 [123] Sutanto S J, Wenninger J, Coenders-Gerrits A M J, et al.Partitioning of evaporation into transpiration, soil evaporation and interception:A comparison between isotope measurements and a HYDRUS-1D model[J].Hydrology Earth System Sciences, 2012, 16(8):2605-2616. doi: 10.5194/hess-16-2605-2012
点击查看大图
计量
- 文章访问数: 1025
- PDF下载量: 3716
- 被引次数: 0