留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江汉平原地下水化学特征及水流系统分析

梁杏 张婧玮 蓝坤 沈帅 马腾

梁杏, 张婧玮, 蓝坤, 沈帅, 马腾. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103
引用本文: 梁杏, 张婧玮, 蓝坤, 沈帅, 马腾. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103
Liang Xing, Zhang Jingwei, Lan Kun, Shen Shuai, Ma Teng. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103
Citation: Liang Xing, Zhang Jingwei, Lan Kun, Shen Shuai, Ma Teng. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

江汉平原地下水化学特征及水流系统分析

doi: 10.19509/j.cnki.dzkq.2020.0103
基金项目: 

国家自然科学基金项目 41772268

中国地质调查局项目 12120114069301

中国地质调查局项目 121201001000150121

详细信息
    作者简介:

    梁杏(1958-), 女, 教授, 博士生导师, 主要从事水文地质学领域的教学和科研工作。E-mail:xliang@cug.edu.cn

  • 中图分类号: X143

Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain

  • 摘要: 江汉平原水质性缺水问题日益突出,识别江汉平原地下水流系统分布模式,对地下水资源的合理利用与保护具有重要意义。选取江汉平原典型区域,综合水文地质条件、水动力场及水化学同位素指标深入分析地下水补给过程、水岩作用及滞留时间。得出由于碳酸盐岩的溶解,研究区的地下水化学类型属于HCO3-Ca·(Mg)型。地下水中典型离子随深度增加逐渐降低,同位素随深度增加逐渐偏负,表现出地下水流系统呈局部与区域水流系统的特点,系统深度界限在10~20 m。独立而复杂的局部水流系统在平枯水期地下水向河渠地表水排泄。根据3H的含量,局部水流为现代水,水循环交替迅速。受地形控制,中深层地下水总体由西和西北向东和东南径流,汇入汉江和长江,为区域水流系统。由于补给源的高程效应,区域水流的18O值存在明显分区,指示不同的补给来源与水流路径。山前丘陵区基本为现代水,向平原腹地纵深至汉江和长江排泄区,地下水年龄在几百年至6 000 a不等,水循环交替缓慢。研究发现江汉平原低洼排泄区存在区域水流的顶托补给,可为原生劣质水的分布与聚集研究提供依据。

     

  • 图 1  江汉平原水文系统分布与研究区位置图(a)、钻孔CG4水文地质柱状图(b)及江汉平原地质剖面图(c)

    Figure 1.  The distribution of hydrological system in Jianghan Plain and the location of study area (a), vertical lithological profile of borehole CG4 (b), geological profile of the Jianghan Plain (c)

    图 2  研究区不同区域地下水及地表水Piper三线图(中值)

    Figure 2.  The Piper diagram of groundwater and surface water in different areas of the study area (median)

    图 3  研究区不同区域地下水特征离子(SO42-、Cl-和NO3-)和δ18O值垂向分布图

    Figure 3.  The vertical distribution of ion concentrations (SO42-, Cl-, and NO3-), and δ18O values in different areas of the study area

    图 4  研究区不同区域TDS-Cl-、(SO42-+HCO3-)-(Ca2++Mg2+)、Na+-Cl-和(Ca2++Mg2+)-(SO42-+HCO3-)-(Na+-Cl-)关系图

    Figure 4.  Plot of the relationship between TDS and Cl-, SO42- and Cl-, SO42-+HCO3- and Ca2++Mg2+, and (Ca2++ Mg2+)-(SO42-+HCO3-) and Na+-Cl- in different areas of the study area

    图 5  研究区不同区域水样Gibbs图

    Figure 5.  Gibbs diagram of water samples in different areas of the study area

    图 6  研究区不同区域地表水与地下水氘氧(δ2H和δ18O)分布图

    Figure 6.  Plot of δ2H and δ18O in various surface waters and groundwater in different areas of the study area

    图 7  研究区中层孔隙承压水δ18O平面分布图

    Figure 7.  Distribution of δ18O valuesfor middleconfined groundwater in the study area

    图 8  江汉平原研究区水流模式分区示意图

    Figure 8.  Schematic partition diagram of groundwater flow pattern in the study area, Jianghan Plain

    图 9  汉江区域水流模式剖面分布图

    Figure 9.  Distribution profile of groundwater flow pattern in the Han River region

    图 10  汉江-长江地块水流模式剖面分布图

    Figure 10.  Distribution profile of groundwater flow pattern in the interfluve between the Han River and Yangtze River

    表  1  江汉平原水文系统划分

    Table  1.   Distribution of hydrological system in Jianghan Plain

    区域 一级划分 二级划分 三级划分
    名称 代码 面积/km2 名称 代码 面积/km2 名称 面积/km2
    长江
    干流
    以北
    汉江
    流域
    H01 14 608.2 汉江夹道区 H01A 1 118.68
    汉北支流区 H01B 6 101.78 天门河三级系统 4 171.46
    府河三级系统 1 930.32
    汉江主干流区 H01C 1 949.50
    汉江南分叉河流 H01D 4 671.78 通顺河三级系统 2 643.23
    东荆河三级系统 2 028.55
    汉江东长河 H01E 766.47
    长江
    干流
    长江
    干流
    区域
    H02 14 188.1 玛瑙河三级系统 1 153.81
    沮漳河三级系统 1 782.76
    荆北地区支流 H02A 6 218.85 内荆河三级系统 2 914.13
    老河三级系统 296.61
    长滩三级系统 71.54
    四湖流域 H02B 5 125.97
    长江主干流区 H02C 2 843.23
    长江
    干流
    以南
    洞庭湖
    流域
    松滋河流域 H03A 2 433.78
    虎渡河流域 H03B 1 619.60
    藕池河流域 H03C 422.50
    调弦河流域 H03D 559.41
    下载: 导出CSV

    表  2  水样测试手段及方法

    Table  2.   Testing means and methods for water samples

    测试指标 仪器或方法 最低检出浓度 测试单位
    常规阳离子 电感耦合等离子体质谱仪(ICAP 6300,美国) 0.001 mg/L 中国地质大学(武汉)
    地质调查研究院
    常规阴离子 离子色谱仪(ICS-2100,赛默飞,美国) 0.01 mg/L
    氘氧同位素(δ2H和δ18O) 液态水同位素分析仪(LGR,IWA-45EP,美国) δ2H:0.5‰; δ18O:0.1‰
    氚(3H) 1220 Quantulus型超低本底液体闪烁谱仪 0.1 TU 中国地质大学(武汉)
    环境学院实验中心
    放射性14C 加速器质谱仪 0.1 pMC 西安加速质谱中心
    下载: 导出CSV

    表  3  江汉平原研究区地下水化学指标统计结果

    Table  3.   The statistic results of hydrogeochemical indicators in the study area, Jianghan Plain

    区域 含水岩组 K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- NO3- TDS pH δ2H/
    δ18O/
    E 水化学
    类型
    ρB/(mg·L-1)




    浅层孔隙潜水 最大值 156.5 125.5 327.8 86.6 229.4 266.9 745.4 351.8 1285.0 7.5 -27.5 -2.0 4.9 A, B
    (0~15m) 最小值 0.3 6.7 52.0 15.2 1.7 0.0 127.6 0.0 216.5 6.5 -54.5 -8.1 -4.9
    (n=44) 平均值 16.5 33.8 161.0 40.0 64.0 84.1 504.9 93.7 660.2 7.0 -42.0 -6.4 0.2
    中层孔隙承压水 最大值 32.9 77.0 244.0 58.8 159.0 456.0 799.0 220.3 1082.3 7.7 -30.9 -4.1 10.0 A, B
    (15~70m) 最小值 0.2 8.1 24.4 14.0 0.3 0.0 187.8 0.0 151.9 6.4 -54.8 -8.6 -9.9
    (n=108) 平均值 2.0 23.7 120.0 34.0 15.5 22.9 523.3 14.6 485.3 6.9 -47.1 -7.0 1.6




    浅层孔隙潜水 最大值 25.6 48.5 181.5 56.4 99.8 79.6 657.3 41.8 765.9 7.3 -30.1 -3.6 3.3 A, B
    (0~20m) 最小值 0.4 13.8 70.8 12.5 0.86 0.0 264.1 0.0 299.7 6.3 -20.9 -7.9 -3.0
    (n=17) 平均值 3.2 23.9 118.0 34.4 25.1 19.4 221.5 4.8 484.7 6.9 -41.1 -6.3 0.5
    中层孔隙承压水 最大值 3.5 67.1 172.2 68.8 68.8 66.0 831.3 8.8 664.8 7.9 -37.7 -5.4 4.9 A, B
    (20~80m) 最小值 0.5 9.4 51.9 11.3 0.0 0.0 180.1 0.0 187.1 6.2 -58.3 -8.6 -7.1
    (n=88) 平均值 1.2 25.0 102.1 28.0 5.0 1.8 512.3 0.7 419.0 7.0 -47.4 -7.1 -0.3




    浅层孔隙潜水 最大值 148.6 109.0 215.5 60.3 122.7 208.8 907.0 297.5 1037.0 8.3 -23.5 -3.2 10.7 A, B, C, D
    (0~20m) 最小值 0.4 7.8 53.9 13.7 0.0 0.0 160.0 0.0 270.0 6.3 -55.8 -8.1 0.1
    (n=109) 平均值 5.3 27.5 128.1 28.2 19.3 30.1 552.0 23.2 523.0 6.9 -40.9 -6.5 1.1
    中层孔隙承压水 最大值 14.6 64.9 172.7 45.3 29.7 12.2 850.0 12.3 665.0 7.5 -31.0 -4.6 9.8 A, B
    (20~100m) 最小值 0.7 2.1 23.0 12.3 0.0 0.0 171.0 0.0 187.0 6.3 -58.5 -8.6 0.0
    (n=111) 平均值 1.9 18.9 120.7 24.8 3.3 1.4 576.0 0.26 457 6.9 -45.8 -7.2 3.2
    E代表电荷平衡误差;水化学类型:A为HCO3-Ca型水,B为HCO3-Ca-Mg型水,C为HCO3-Cl-Ca型水,D为HCO3-SO4-Ca型水
    下载: 导出CSV

    表  4  汉江-长江剖面水样氚(3H)测试结果

    Table  4.   Results of the 3H analyses in water samples on profile of the Han River and the Yangtze River

    样品编号 井深/m 3H/TU 水样类型
    TG1 23 17.5 地下水
    TG2 28 14.6 地下水
    TG3 30 14.0 地下水
    TG4 23 13.9 地下水
    TG5 50 15.6 地下水
    TG6 24 16.4 地下水
    TG7 26 16.8 地下水
    TG8 25 16.3 地下水
    TG9 28 15.4 地下水
    TG10 15 13.8 地下水
    TS1 0 20.8 东荆河
    TS2 0 18.4 东荆河
    TS3 0 20.5 内荆河
    TS4 0 21.3 长江
    下载: 导出CSV

    表  5  研究区地下水14C的测试结果与校正分析

    Table  5.   Results of the 14C test and calibration analyses for groundwater samples in the study area


    样品
    编号
    井深/
    m
    滤水管/
    m
    δ13C/‰ 14C/
    pMC
    视年龄/
    (aB.P.)
    统计模型/
    (aB.P.)
    化学混合模型/
    (aB.P.)
    平均混合年龄/
    (aB.P.)
    Pearson模型/
    (aB.P.)
    IAEA模型/
    (aB.P.)
    地下水
    位/m






    CG1 230 44~60 -6.6 64.5 3520 -809.7 -569.6 现代 -7 291.3 -3 765.0 21.57
    130~150 -5.5 32.6 9 017 4 846.5 4 100.3 4 473.4 -3 120.1 406.2 21.59
    CG2 50 45~50 -10.8 58.9 4 254 -53.5 -311.1 现代 -2 434.0 1 092.3 21.86
    CG3 50 24~25 -6.3 64.8 3 488 -843.0 -602.9 现代 -7 607.3 -4 081.0 21.49
    45~50 -9.0 59.2 4 206 -103.9 188.1 42.1 -3 918.2 -391.9 21.52
    CG4 201 40~80 -6.5 52.3 5 209 927.7 126.9 527.3 -5 640.8 -2 114.5 22.04
    138~160 -8.7 29.4 9 827 5 679.5 4 801.4 5 240.5 1 592.2 5 118.5 22.09
    CG5 85 52~72 -11.8 45.3 6 356 2 108.6 1 721.4 1 915.0 501.8 4 028.0 22.17
    CG6 87 54~75 -10.1 67.0 3 222 -1 116.6 -2 037.3 现代 -3 998.0 -471.7 23.93



    HJ004 240 30~45 -9.9 61.3 3 930 -386.5 -1 255.6 现代 -3 428.6 93.9 22.89
    64~80 -11.0 40.9 7 180 2 956.7 2 166.4 2 561.5 738.9 4 261.3 -
    182~238 -12.1 3.8 26 250 22 580.5 22 303.6 22 442.0 21 160.1 24 682.6 -
    HJ007 185 40~70 -3.9 54.5 4 880 588.6 273.8 431.2 -10 171.4 -6 648.9 22.98
    160~180 -10.7 9.6 18 830 14 940.6 13 921.2 14 430.9 12 516.6 16 039.0 -
    53~72 -13.0 64.6 3 510 -816.1 -1 423.1 现代 -1 648.3 1 874.1 -
    HJ005 138 76~86 -10.1 44.2 6 560 2 321.0 1 256.7 1 788.8 -556.1 2 966.4 -
    HJ003 110 110~126 -11.8 18.5 13 540 9 508.5 8 232.2 8 870.4 7 929.1 11 451.6 -
    HJ008 186 44~76 -9.3 26.8 10 570 6 444.2 6 148.2 6 296.2 2 868.6 6 391.0 -
    30~38 -12.9 95.2 400 -4 021.3 -3 954.4 现代 -4 885.4 -1 363.0 27.53
    40~50 -12.8 88.5 985 -3 417.7 -3 635.7 现代 -4 352.5 -830.1 27.52
    HJ010 73 150~180 -11.5 12.2 16 880 12 939.0 12 107.7 12 523.4 11 089.9 14 612.4 -
    HJ009 104 22~66 -11.9 84.4 1 370 -3 026.3 -2 430.3 现代 -4 570.8 -1 048.4 29.07
    HJ013 78 30~42 -13.2 70.6 2 800 -1 548.4 -1 881.6 现代 -2 222.6 1 299.9 30.86
    HJ012 40 44~60 -9.7 85.3 1 280 -3 115.9 -2 797.5 现代 -6 369.0 -2 846.6 -
    25~37 -11.2 62.8 3 730 -591.6 -452.2 现代 -2 667.4 855.0 -
    下载: 导出CSV
  • [1] [1] 梁杏,张人权,靳孟贵.地下水流系统:理论、应用与调查[M].北京:地质出版社,2015.
    [2] 梁杏,张人权,牛宏,等.地下水流系统理论与研究方法的发展[J].地质科技情报,2012,31(5):143-151. http://www.cqvip.com/QK/93477A/201205/43592586.html
    [3] Goderniaux P,Davy P,Bresciani E,et al.Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments[J].Water Resources Research,2013,49:2274-2286.doi: 10.1002/wrcr.20186
    [4] Liang X,Quan D J,Jing M G,et al.Numerical simulation of groundwater flow patterns using flux as upper boundary[J].Hydrology Process,2013,27:3475-3483.doi: 10.1002/hpy.9477
    [5] Currell M J,Han D M,Chen Z Y,et al.Sustainability of groundwater usage in northern China:Dependence on paleowaters and effects on water quality,quantity and ecosystem health[J].Hydrology Process,2012,26:4050-4066.doi: 10.1002/hyp.9028
    [6] Wang J Z,Wörman A,Bresciani E,et al.On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems[J].Journal of Hydrology,2016,543:47-58.http://dx.doi.org/10.1016/j.jhydrol.2016.04.034 doi: 10.1016/j.jhydrol.2016.04.034
    [7] Niu B B,Wang H H,Loáiciga H A,et al.Temporal variations of groundwater quality in the western Jianghan Plain,China[J].Science of the Total Environment,2017,578:542-550.http//dx.doi.org/10.1016/j.scitotenv.2016.10.225 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0391af89b9a85ccd188c0b887d54ed46
    [8] Han D M,Liang X,Jin M G,et al.Hygrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan,Xinzhou Basin,Shanxi,China[J].Environmental Management,2009,44:243-255.doi: 10.1007//s00267-009-9301-0
    [9] Montcoudiol N,Molson J,Lemieux J M.Groundwater geochemistry of the Outaouais Region (Québec,Canada):A regional-scale study[J].Hydrogeology Journal,2014,23:377-396.doi: 10.1007/s10040-014-1190-5
    [10] Han D M,Liang X,Currell M J,et al.Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields,Xinzhou Basin,Shanxi,China[J].Hydrology Process,2010,24:3157-3176.doi: 10.1002/hyp.7742
    [11] Majumder R K,Halim M A,Saha B B,et al.Groundwater flow system in Bengal Delta,Bangladesh revealed by ebvironmental isotopes[J].Environmental Earth Sciences,2011,64:1343-1352.doi: 10.1007/s12665-011-0959-2
    [12] Koh D C,Ha K,Lee K S,et al.Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island[J].Journal of Hydrology,2012,432/433:61-74.doi: 10.1016/j.jhydrol.2012.02.030
    [13] 张人权,梁杏,靳孟贵.末次盛冰期以来河北平原第四系地下水流系统的演变[J].地学前缘,2013,20(3):217-226. http://d.old.wanfangdata.com.cn/Conference/8118544
    [14] He J M,Ma J Z,Zhao W,et al.Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin,Northwest China[J].Hydrogeology Journal,2015,23:1745-1759.doi: 10.1007/s10040-015-1311-9
    [15] Casique E M,Belmont J G,Guerrero A O.Regional groundwater flow and geochemical evolution in the Amacuzac River Basin,Mexico[J].Hydrogeology Journal,2016,24:1873-1890.doi: 10.1007/s10040-016-1423-x
    [16] Zhou Y,Wang Y X,Li Y L,et al.Hydrogeochemical characteristics of central Jianghan Plain,China[J].Environmental Earth Sciences,2013,68:765-778.doi: 10.1007/s12665-012-1778-9
    [17] Zhou Y,Wang Y X,Zwahlen F,et al.Organochlorine pesticide residues in the environment of central Jianghan Plain,China[J].Environmental Forensics,2011,12:106-119.https://doi.org/10.1080/15275922.2010.547546 doi: 10.1080/15275922.2010.547546
    [18] Yao L L,Wang Y X,Tong L,et al.Seasonal variation of antibiotics concentration in the aquatic environment:A case study at Jianghan Plain,central China[J].Science of the Total Environment,2015,527-528:56-64.http://dx.doi.org/10.1016/j.scititenv.2015.04.091 doi: 10.1016/j.scititenv.2015.04.091
    [19] 李红梅,邓亚敏,罗莉威,等.江汉平原高砷含水层沉积物地球化学特征[J].地质科技情报,2015,34(3):178-184. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201901028
    [20] 成东,廖鹏,袁松虎.FeS胶体对三价铁吸附态As(V)的解吸作用[J].地球科学,2016,41(2):325-330. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201602012.htm
    [21] 沈帅,马腾,杜尧,等.江汉平原典型地区季节性水文条件影响下氮的动态变化规律[J].地球科学,2017,42(5):674-684. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705003
    [22] Gan Y Q,Zhao K,Deng Y M,et al.Groundwater flow and hydrogeochemical evolution in the Jianghan Plain,central China[J].Hydrogeology Journal,. http://doi.org/10.1007/s10040-018-1778-2
    [23] Zhang J W,Liang X,Jin M G,et al.Indentifying the groundwater flow systems in a condensed river-network interfluve between the Han River and Yangtze River (China) using hydrogeochemical indicators[J].Hydrogeology Journal,2019,27:2415-2430. doi: 10.1007/s10040-019-01994-1
    [24] 张婧玮,梁杏,葛勤,等.江汉平原第四系弱透水层渗透系数求算方法[J].地球科学,2017,42(5):761-770. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705012
    [25] 段艳华.浅层地下水系统中砷富集的季节性变化与机理研究[D].武汉:中国地质大学(武汉),2016.
    [26] 段艳华,甘义群,郭欣欣,等.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J].地质科技情报,2014,33(2):140-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201402023
    [27] 沈帅,马腾,杜尧,等.江汉平原东部浅层地下水氮的空间分布特征[J].环境科学与技术,2018,41(2):47-56.doi: 10.19672/j.cnki.1003-6504.2018.02.008
    [28] Duan Y H,Gan Y Q,Wang Y X,et al.Arsenic speciation in aquifer sedment under varying groundwater regime and redox conditions at Jianghan Plain of Central China[J].Science of the Total Environment,2017,607/608:992-1000. https://www.ncbi.nlm.nih.gov/pubmed/28724231
    [29] Nisi B,Buccianti A,Vaselli O,et al.Hydrogeochemistry and strontium isotopes in the Arno River Basin (Tuscany,Italy):Constraints on natural controls by statistical modeling[J].Journal of Hydrology,2008,360:166-183.doi: 10.1016/j.jhydrol.2008.07.030
    [30] Liu F,Song X,Yang L,et al.Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin,Ordos energy base,Northwestern China[J].Hydrology and Earth System Sciences,2015,19:551-565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=205f4177aea2f7eba927c1ea811821dc
    [31] Fisher R S,Mulican W F III.Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahuan desert Trans-Pecos,Texas,USA[J].Hydrogeol Journal,1997,5:4-16. doi: 10.1007-s100400050102/
    [32] Krishnaraj S,Murugesan V,Vijayaraghavan K,et al.Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations[J].Geosciences,2011,1:16-25.doi: 10.5923/j.geo.20110101.02
    [33] Farid I,Zouari K,Rigane A,et al.Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers:case of Chougafiya basin (central Tunisia)[J].Journal of Hydrology,2015,530:508-532.http://doi.org/10.1016/j.jhydrol.2015.10.009 doi: 10.1016/j.jhydrol.2015.10.009
    [34] 赵家成,魏宝华,肖尚斌.湖北宜昌地区大气降水中的稳定同位素特征[J].热带地理,2009,29(6):526-531. http://d.old.wanfangdata.com.cn/Periodical/rddl200906004
    [35] Chen Z Y,Wei W,Liu J,et al.Identifying the recharge sources and age of groundwater in the Songnen Plain (Northeast China) using environmental isotopes[J].Hydrogeology Journal,2011,19:163-176.doi:10.1007//s 10040-010-0650-9
    [36] Michel R L.Chapter 5 Radionuclides as tracers and timers in surface and groundwater[J].Radiocativity in the Environment,2009,16:139-230.doi: org/10.1016/S1569-480(09)01605-2
    [37] Wang Y,Jiao JJ.Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta,China[J].Journal of Hydrology,2012,438/439:112-124.http://dx.doi.org/10.1016/j.jhydrol.2012.03.008 doi: 10.1016/j.jhydrol.2012.03.008
    [38] Geyh M A.Environmental isotopes in the hydrological cycle:Principles and applications- groundwater saturated and unsaturated zone//Mook W G.UNESCO and IAEA.Vienna:UNESCO and IAEA,2000,4:100-107.
    [39] Tamers M A.The validity of radiocarbon dates on groundwater[J].Survey in Geophysics,1975,2:217-239.doi: org/10.1007/BF01447909
    [40] Pearson F J,White D E.Carbon 14 ages and flow rates of water in Carrizo Sand,Atascosa County,Texas[J].Water Resources Research,1967,3:251-261. doi: 10.1029-WR003i001p00251/
    [41] Salem O,Visser J M,Deay M,et al.Groundwater flow patterns in the weastern Lybian Arab Jamahitiya evaluated from isotope data//IAEA.Arid zone hydrology:Investigations with Isotope Techniques.Vienna:IAEA 1980:165-179.
    [42] 于凯.高砷地下水系统中有机质来源及其对砷动态变化的影响研究:以江汉平原为例[D].武汉:中国地质大学(武汉),2016.
    [43] Du Y,Ma T,Deng Y M,et al.Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain,central China[J].Hydrogeology Journal,2018,26(4):1047-1059.http://doi.org/10.1007/s10040-017-1709-7 doi: 10.1007/s10040-017-1709-7
    [44] Clark I D,Fritz P.Environmental isotopes in hydrogeology[M].Lewis,New York:[s.n.],1997:328.
    [45] 陈宗宇.从华北平原地下水系统中古环境信息研究地下水资源演化[D].长春:吉林大学,2001.
    [46] Chen Z Y,Nie Z L,Zhang G H,et al.Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin,northwestern China[J].Hydrogeology Journal,2006,14:1635-1651.doi: 10.1007//s10040-006-0075-7
    [47] Mook W G,Bommerson J C,Staverman W H.Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J].Earth and Planetary Science Letters,1974,22:169-176.http://doi.org/10.1016/0012-821X(74)90078-8 . doi: 10.1016/0012-821X(74)90078-8
    [48] Atkinson A P,Cartwright I,Gilfedder B S,et al.Using 14C and 3H to understand groundwater flow and recharge in an aquifer window[J].Hydrology and Earth System Sciences,2014,18:4591-4964.doi: 10.5194/hess-18-4954-2014
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1814
  • PDF下载量:  3983
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-14

目录

    /

    返回文章
    返回