Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds
-
摘要: 以典型纳污坑塘(污水库)周边地下水水质监测数据为基础,在对区内地下水污染源进行分析的基础上,采用水环境健康风险评估模型,对区内地下水污染健康风险进行了系统评价研究。污染来源识别结果表明:纳污坑塘周边第Ⅰ、第Ⅱ含水层地下水污染严重,其污染源主要为坑塘内堆放的工业污水以及工业废渣。污染健康风险评估结果表明:8号坑附近第Ⅰ含水层中砷浓度以及北库南侧第Ⅱ含水层中1,2-二氯乙烷总致癌风险分别为10-2、10-3数量级,远超可接受风险水平10-6。不同含水层中污染物平均致癌风险大小关系为,第Ⅰ含水层:砷>1,2-二氯乙烷;第Ⅱ含水层:1,2-二氯乙烷>砷> 1,1,2-三氯乙烷>四氯化碳。1,2-二氯乙烷等挥发性有机污染物4种潜在暴露途径的平均致癌风险大小关系表现为:饮用地下水>皮肤接触地下水>经室外吸入空气中气态污染物>经室内吸入空气气态污染物。相对于敏感用地,非敏感用地污染物的总致癌风险以及危害商较低。Abstract: In order to study the groundwater pollution in typical sewage pits and ponds and its potential risk to human health, based on the groundwater quality monitoring data, the source of groundwater pollution in the area was identified, and the water environment health risk assessment model was used to systematically assess the health risk of groundwater pollution in the area. The results of pollution source identification show that groundwater pollution in the first and second aquifers is serious, and the main pollution sources are industrial waste water and industrial waste residue stacked in the area. The results of health risk assessment show that the total carcinogenic risk of arsenic in the first aquifer near NO.8 pit in the area and the total carcinogenic risk of 1, 2-dichloroethane in the second aquifer on the south side of the north reservoir are 10-2 and 10-3, far higher than the acceptable risk level of 10-6 and other monitoring wells around. The overall relationship between the average carcinogenic risk of pollutants in different aquifers is as follows: the first aquifer: arsenic > 1, 2-dichloroethane; the second aquifer: 1, 2-dichloroethane > arsenic > 1, 1, 2-trichloroethane > carbon tetrachloride. Among the various exposure routes, drinking groundwater is the main exposure route for such pollutants as fluorine, arsenic, 1, 2-dichloroethane, 1, 1, 2-trichloroethane and carbon tetrachloride. The relationship between the average carcinogenic risk of four potential exposure routes of volatile organic pollutants such as 1, 2-dichloroethane is as follows: drinking groundwater > skin contact with ground water>inhaling gaseous pollutants from groundwater in outdoor air > inhaling gaseous pollutants from groundwater in indoor air. Compared with sensitive landuse, non-sensitive landuse has lower cancer risk and hazard quotient since the exposure hazards in childhood is not considered.
-
Key words:
- groundwater /
- pollution sources /
- health risk /
- exposure routes /
- environmental quality
-
图 3 敏感用地情景下和非敏感用地情景下氟通过饮用水途径计算的危害商分布
a-1.敏感用地情景下第Ⅰ含水层;a-2.敏感用地情景下第Ⅱ含水层;b-1.非敏感用地情景下第Ⅰ含水层;b-2.非敏感用地情景下第Ⅱ含水层
Figure 3. Spatial distribution of hazard quotients of fluorine in the first aquifer (a-1) and second aquifer (a-2) under sensitive landuse calculated by drinking water exposure route and spatial distribution of hazard quotients of fluorine in the first aquifer (b-1) and second aquifer (b-2) under non sensitive landuse calculated by drinking water exposure route
图 4 敏感用地情景下和非敏感用地情景下砷通过饮用水途径、皮肤接触地下水途径计算的总致癌风险分布
a-1.敏感用地情景下第Ⅰ含水层;a-2.敏感用地情景下第Ⅱ含水层;b-1.非敏感用地情景下第Ⅰ含水层;b-2.非敏感用地情景下第Ⅱ含水层
Figure 4. Spatial distribution of total carcinogenic risk of arsenic in the first aquifer (a-1) and second aquifer (a-2) under sensitive landuse calculated by drinking water exposure route, skin contact with groundwater route and spatial distribution of total carcinogenic risk of arsenic in the first aquifer (b-1) and second aquifer (b-2) under non sensitive landuse calculated by drinking water route and skin contact with groundwater exposure route
图 5 敏感用地情景下部分矿物通过所有途径计算的总致癌风险分布和非敏感用地情景下部分物质通过饮用水途径、皮肤接触地下水途径计算的总致癌风险分布
a-1.敏感用地情景下第Ⅰ含水层中1, 2-二氯化碳;a-2.敏感用地情景下第Ⅱ含水层中1, 2-二氯化碳、1, 1, 2-三氯化碳、四氯化碳;b-1.非敏感用地情景下第Ⅰ含水层中1, 2-二氯化碳;b-2.非敏感用地情景下第Ⅱ含水层中1, 2-二氯化碳、1, 1, 2-三氯化碳、四氯化碳
Figure 5. Spatial distribution of total carcinogenic risk of 1, 2-dichloroethane in the first aquifer (a-1) and 1, 2-dichloroethane, 1, 1, 2-trichloroethane, carbon tetrachloride in the second aquifer (a-2) under sensitive landuse calculated through all the exposure routes and spatial distribution of total carcinogenic risk of 1, 2-dichloroethane in the first aquifer (b-1) and 1, 2-dichloroethane, 1, 1, 2-trichloroethane, carbon tetrachloride in the second aquifer(b-2) under non sensitive landuse calculated through all the exposure routes
表 1 不同暴露情景下受体部分物理特征参数及暴露参数选取
Table 1. Selection of partial physical characteristic parameters and exposure parameters of receptors in different landuse
参数名称 非敏感用地 敏感用地 成人 儿童 成人 体重/kg 61.8 21.5 61.8 总皮肤表面积/cm2 17 000 8 500 17 000 成人每日空气呼吸量/(m3·d-1) 16.0 9.2 16.0 日饮水量/(L·d-1) 2.4 0.62 2.4 儿童次经皮肤接触的时间(游泳、洗澡等)/(min·次-1·d-1) 11.3 10.8 11.3 表 2 研究区主要超标污染物浓度统计
Table 2. Statistics of the concentrations of main pollutants in the study area
测试指标 第Ⅰ含水层 第Ⅱ含水层 样品个数 最小值 最大值 平均值 标准差 CV 国家标准* 超标率% 样品个数 最小值 最大值 平均值 标准差 CV 国家标准* 超标率% 氟化物 19 0.67 4.25 1.65 0.98 0.60 1 79 23 0.68 3.57 1.57 0.84 0.54 1 74 氯化物 19 25 592 178 161 0.90 250 11 23 16 1 777 272 382 1.40 250 26 硫酸盐 19 103 3 569 836 968 1.16 250 63 23 67 6 232 1 192 1 416 1.19 250 83 总硬度 25 159 2 757 809 693 0.86 450 52 31 180 3 380 885 773 0.87 450 74 钠 25 84.4 1 421 483 322 0.67 200 84 31 61.3 2 628 560 492 0.88 200 84 氨氮 12 0.01 0.69 0.15 0.18 1.24 0.5 8 11 0.01 0.3 0.07 0.09 1.30 0.5 0 锰 27 1.28 2 942 407 656 1.61 0.1 56 33 0.001 0.94 0.23 0.25 1.11 0.1 55 砷 27 0.48 18 800 699 3 617 5.17 10 7 33 0.5 29.5 2.68 5.39 2.01 10 6 高锰酸盐指数 19 0.65 5.86 2.01 1.47 0.73 3 16 25 0.74 4.48 1.52 0.81 0.53 3 4 四氯化碳 7 0.05 1.5 1.29 0.55 0.42 2 0 13 0.37 2.98 1.45 0.61 0.42 2 8 1, 2-二氯乙烷 7 1.4 665 96.2 250.8 2.61 30 14 13 1.4 4 006 588 1241 2.11 30 38 1, 1, 2-三氯乙烷 7 0.016 1.5 1.15 0.62 0.54 5 0 13 1.19 8.17 2.18 1.93 0.88 5 8 注:* 《地下水环境质量标准》(GB/T 14848-2017)Ⅲ类标准:以人体健康基准值为依据,主要适用于生活饮用水水源及工、农业用水;CV表示变异系数;氟化物、氯化物、硫酸盐、总硬度、钠、氨氮、锰的单位为mg/L;高锰酸盐指数,无量纲;砷、1, 2-二氯乙烷、四氯化碳、1, 1, 2-三氯乙烷的单位为μg/L。 -
[1] Gleeson T, Wada Y, Bierkens M F P, et al.Water balance of global aquifers revealed by groundwater footprint[J].Nature, 2012, 488:197-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a50cb7a4a4f98ee318cae7320d6a7bd [2] Wada Y, van Beek L P H, Bierkens M F P.Nonsustainable groundwater sustaining irrigation:A global assessment[J].Water Resources Research, 2012, 48(6):2055. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227736517/ [3] 孙雪娇.地下水水源地污染应急处置技术筛选与评估方法研究[D].哈尔滨: 哈尔滨工业大学, 2012. [4] Ma Y, Liu Z, Xi B, et al.Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city[J].Ecological Indicators, 2018, 105:709-716. https://www.sciencedirect.com/science/article/pii/S1470160X18308343 [5] Liang Z, Yang M, XI C, et al.Health risk assessment and risk control:Drinking groundwater in Yinchuan Plain, China[J].Exposure and Health, 2017, 11:59-72. doi: 10.1007%2Fs12403-017-0266-6 [6] 高存荣, 王俊桃.我国69个城市地下水有机污染特征研究[J].地球学报, 2011, 32(5):581-591. http://d.old.wanfangdata.com.cn/Periodical/dqxb201105008 [7] 高彦春, 王晗, 龙笛.白洋淀流域水文条件变化和面临的生态环境问题[J].资源科学, 2009, 31(9):1506-1513. http://d.old.wanfangdata.com.cn/Periodical/zykx200909008 [8] 李建国, 李贵宝, 刘芳, 等.白洋淀芦苇资源及其生态功能与利用[J].南水北调与水利科技, 2004, 2(5):37-40. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj200405013 [9] 莫杨, 杨文静, 叶丹, 等.长江镇江段苯酚污染事件残留物健康风险评估研究[J].环境卫生学杂志, 2019, 9(3):227-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwyx-wsx201903007 [10] Emenike P C, Tenebe I, Ogarekpe N, et al.Probabilistic risk assessment and spatial distribution of potentially toxic elements in groundwater sources in Southwestern Nigeria[J].Scientific Reports, 2019, 9(1):15920. https://digital.library.txstate.edu/handle/10877/9368 [11] 陈梦舫, 韩璐, 罗飞.污染场地土壤与地下水风险评估方法学[M].北京:科学出版社, 2017. [12] 化勇鹏.污染场地健康风险评价及确定修复目标的方法研究[D].武汉: 中国地质大学(武汉), 2012. [13] 董敏刚, 张建荣, 罗飞, 等.我国南方某典型有机化工污染场地土壤与地下水健康风险评估[J].土壤, 2015, 47(1):100-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201501016 [14] 杨彦, 于云江, 魏伟伟, 等.常州市浅层地下水重金属污染对城区、城郊居民健康风险评价[J].环境化学, 2013, 32(2):30-39. http://d.old.wanfangdata.com.cn/Periodical/hjhx201302004 [15] 李春平, 吴骏, 罗飞, 等.某有机化工污染场地土壤与地下水风险评估[J].土壤, 2013, 45(5):933-939. http://d.old.wanfangdata.com.cn/Periodical/tr201305026 [16] 程继雄, 程胜高, 张炜.地下水质量评价常用方法的对比分析[J].安全与环境工程, 2008, 15(2):23-25. http://d.old.wanfangdata.com.cn/Periodical/dzktaq200802006 [17] 吴文晖, 邹辉, 朱岗辉, 等.湘中某矿区地下水重金属污染特征及健康风险评估[J].生态与农村环境学报, 2018, 34(11):69-75. http://d.old.wanfangdata.com.cn/Periodical/ncsthj201811010 [18] 苏安琪, 韩璐, 晏井春, 等.基于保护健康和水环境的氯代烃类污染场地地下水风险评估[J].环境工程, 2018, 36(7):143-148. http://d.old.wanfangdata.com.cn/Periodical/hjgc201807028 [19] 环境保护部.HJ25.3-2014污染场地风险评估技术导则[S].北京:中国环境科学出版社, 2014. [20] 艾提业古丽·热西提, 麦麦提吐尔逊·艾则孜, 王维维, 等.博斯腾湖流域地下水重金属污染的人体健康风险评估[J].生态毒理学报, 2019, 14(2):251-259. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201902027 [21] 王佩, 陈莉娜, 蒋鹏, 等.2种毒性评估方法对PAHs污染场地人体健康风险的比较研究[J].生态毒理学报, 2016, 11(3):180-190. http://d.old.wanfangdata.com.cn/Periodical/cyyhj201603021 [22] 陈志良, 雷国建, 周建民, 等.典型氯碱污染场地环境风险评价[J].环境工程学报, 2014, 8(6):431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201406071 [23] 倪彬, 王洪波, 李旭东, 等.湖泊饮用水源地水环境健康风险评价[J].环境科学研究, 2010, 23(1):74-79. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201001012 [24] 张达政, 李海明, 詹晓燕, 等.典型制革污染场地地下水盐污染特征[J].水文地质工程地质, 2014, 41(2):18-23. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201402004 [25] 张迪, 郭华明, 倪萍, 等.氧化还原条件对地下水中砷释放迁移的影响:以通榆县高砷地下水为例[J].第四纪研究, 2014, 34(5):1072-1081. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201405016