留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市化进程下北京平原渗流场与地面沉降发展演化模拟

成建梅 柳璨 李敏敏 薛琪 宫辉力 梁腾飞

成建梅, 柳璨, 李敏敏, 薛琪, 宫辉力, 梁腾飞. 城市化进程下北京平原渗流场与地面沉降发展演化模拟[J]. 地质科技通报, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105
引用本文: 成建梅, 柳璨, 李敏敏, 薛琪, 宫辉力, 梁腾飞. 城市化进程下北京平原渗流场与地面沉降发展演化模拟[J]. 地质科技通报, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105
Cheng Jianmei, Liu Can, Li Minmin, Xue Qi, Gong Huili, Liang Tengfei. Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metropolitan urbanization in Beijing Plain, China[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105
Citation: Cheng Jianmei, Liu Can, Li Minmin, Xue Qi, Gong Huili, Liang Tengfei. Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metropolitan urbanization in Beijing Plain, China[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105

城市化进程下北京平原渗流场与地面沉降发展演化模拟

doi: 10.19509/j.cnki.dzkq.2020.0105
基金项目: 

国家自然科学基金项目 U1911205

国家自然科学基金项目 41771455

国家自然科学基金项目 41130744

详细信息
    作者简介:

    成建梅(1971-), 女, 教授, 主要从事地下水流-污染数值模拟方面的研究工作。E-mail:jmcheng@cug.edu.cn

    通讯作者:

    宫辉力(1956-), 男, 教授, 主要从事地理信息系统与遥感技术应用研究工作。E-mail:gonghl@263.net

  • 中图分类号: X143;P642.26

Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metropolitan urbanization in Beijing Plain, China

  • 摘要: 北京地面沉降已有60多年的历史,其发生发展与半个多世纪城市的快速扩张密不可分。从整个北京平原地下水系统出发,梳理多年时间序列(1950-2015年)的城市发展规模、人口、水资源及开采动态等数据,结合遥感技术解译不同年代北京平原的不透水面变化,分析其对降雨入渗补给量的影响;构建整个北京平原含水层-弱透水层三维结构系统,借助PMWIN软件建立区域尺度的地下水流-地面沉降耦合模型,利用长期水位及沉降观测数据对模型进行识别验证;开展长时间序列的北京平原地下水水头场与地面沉降演化模拟,研究快速城市化进程下北京平原多层含水层系统渗流场演变与地面沉降响应特征。研究表明:长时间尺度区域地下水流场-地面沉降演化模拟基本再现了地面沉降形成和发展演化的过程;北京地下水开采历史与地面沉降发展历史具有一致性,而不同沉降区地面沉降发展受地下水开采和城市发展双重控制,是二者综合作用的结果。

     

  • 图 1  北京平原第四系地质图(据文献[24]修改)

    Figure 1.  Quaternary geological map in Beijing Plain

    图 2  北京平原区水文地质剖面图(据文献[24]修改)

    Figure 2.  Hydrogeological profile in Beijing Plain

    图 3  北京市人口、降雨量与地下水开采量变化

    Figure 3.  Changes in Beijing′s population, rainfall, and groundwater extraction

    图 4  北京平原不透水面积与地下水水位埋深变化图

    Figure 4.  Variation of impervious area and groundwater depths in Beijing Plain

    图 5  北京平原区累计地面沉降(2012年)(据文献[33]修改)

    Figure 5.  Land subsidence of Beijing plain during 1955-2012

    图 6  北京平原三维地质模型图

    Figure 6.  Three-dimensional geological model of Beijing Plain

    图 7  第一含水层水文地质参数分区

    Figure 7.  Regional map of hydrogeological parameters zone in first aquifer

    图 8  识别期末(2005年)地下水渗流场(a)和地面沉降等值线(b)拟合图

    Figure 8.  Comparison of groundwater flow field (a) and comparison of cumulative settlement contour (b) at the end of identification period (2005)

    图 9  北京平原多年水均衡关系变化

    Figure 9.  Calculated water balance in multi-years series in Beijing Plain

    图 10  1959-2017年北京平原地下水流场-累计沉降量变化

    Figure 10.  Simulation of groundwater flow field and cumulative settlement changes in Beijing Plain from 1959 to 2017

    图 11  地下水开采量和不同沉降区沉降曲线

    Figure 11.  Groundwater extraction and groundsettlement curves in different subsidence areas

    图 12  北京平原城市化和地下水开采、地面沉降发展阶段对比图

    Figure 12.  Comparisonfordifferent development stages of urbanization, groundwater extraction and land subsidence in Beijing Plain

  • [1] Galloway D L.国际地面沉降研究现状与发展趋势评述[J].上海国土资源, 2014, 35(2):1-8. http://d.old.wanfangdata.com.cn/Periodical/shdz201402002
    [2] Yin Y, Zhang K, Li X.Urbanization and land subsidence in China[J].The Geological Society of London, 2006, 31:1-5. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb202001005
    [3] Yin J, Yu D, Wilby R.Modelling the impact of land subsidence on urban pluvial flooding:A case study of downtown Shanghai, China[J].Science of the Total Environment, 2016, 544:744-753. https://www.ncbi.nlm.nih.gov/pubmed/26674703
    [4] 杨艳, 贾三满, 王海刚.北京平原区地面沉降现状及发展趋势分析[J].上海地质, 2010, 31(4):23-28. http://d.old.wanfangdata.com.cn/Periodical/shdz201004005
    [5] Zhou C, Gong H, Chen B, et al.Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology[J].Geomorphology, 2019, 335(48):48-61. https://www.sciencedirect.com/science/article/pii/S0169555X19301114
    [6] 于开宁, 娄华君, 郭振中, 等.城市化诱发地下水补给增量的机理分析[J].资源科学, 2004, 26(2):68-73. http://d.old.wanfangdata.com.cn/Periodical/zykx200402010
    [7] 牟凤云, 张增祥, 迟耀斌, 等.基于多源遥感数据的北京市1973-2005年间城市建成区的动态监测与驱动力分析[J].遥感学报, 2007, 11(2):257-268. http://d.old.wanfangdata.com.cn/Periodical/ygxb200702018
    [8] 张有全, 宫辉力, 赵文吉, 等.北京市1990-2000年土地利用变化机制分析[J].资源科学, 2007, 29(3):206-213. http://d.old.wanfangdata.com.cn/Periodical/zykx200703031
    [9] Li W, Ouyang Z, Zhou W, et al.Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces[J].Journal Of Environmental Sciences, 2011, 23(8):1375-1383. https://www.sciencedirect.com/science/article/abs/pii/S1001074210605414
    [10] Chen F, Lin H, Zhang Y, et al.Ground subsidence geo-hazards induced by rapid urbanization:Implications from InSAR observation and geological analysis[J].Natural Hazards and Earth System Sciences, 2012, 12(4):935-942. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_66eb2fa948315f01d43ba43063f56992
    [11] Hayashi T, Tokunaga T, Aichi M, et al.Effects of human activities and urbanization on groundwater environments:an example from the aquifer system of Tokyo and the surrounding area[J].Science of the Total Environment, 2009, 407(9):3165-3172. https://www.ncbi.nlm.nih.gov/pubmed/18823643
    [12] Martín Del Campo M A, Esteller M V, Expósito J L, et al.Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico)[J].Environmental Monitoring and Assessment, 2014, 186(5):2979-2999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bca85a9627a2c33c7a3372774d17ec6
    [13] 杨勇, 郑凡东, 刘立才, 等.北京平原区地下水水位与地面沉降关系研究[J].工程勘察, 2013, 41(8):44-48. http://d.old.wanfangdata.com.cn/Periodical/gckc201308010
    [14] 杜钊锋.北京典型区域不均匀地面沉降成因机制分析[D].北京: 首都师范大学, 2013.
    [15] 周超凡.基于PS-InSAR技术与信息熵的北京典型区域不均匀地面沉降研究[D].北京: 首都师范大学, 2014.
    [16] Chen B, Gong H, Li X, et al.Spatial correlation between land subsidence and urbanization in Beijing, China[J].Natural Hazards, 2015, 75(3):2637-2652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=821438320a8dccda64669e5d1ca3ef10
    [17] 秦欢欢.北京平原地面沉降数值模拟情景分析[J].地质科技情报, 2019, 38(1):221-227. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201901024
    [18] 崔亚莉, 邵景力, 谢振华, 等.基于MODFLOW的地面沉降模型研究:以北京市区为例[J].工程勘察, 2003(5):19-22. http://d.old.wanfangdata.com.cn/Conference/7349873
    [19] 侯爱中, 倪广恒, 雷志栋, 等.基于Landsat TM5遥感影像的北京市平原区不透水面积变化分析[J].水力发电学报, 2013(3):39-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb201303008
    [20] 崔秋洋.联合遥感与分布式水文模型估算北京平原区降水入渗补给量[D].北京: 首都师范大学, 2014.
    [21] 朱琳, 刘畅, 李小娟, 等.城市扩张下的北京平原区降雨入渗补给量变化[J].地球科学:中国地质大学学报, 2013, 38(5):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/dqkx201305016
    [22] 陈蓓蓓, 宫辉力, 李小娟, 等.北京地下水系统演化与地面沉降过程[J].吉林大学学报:地球科学版, 2012, 42(增刊1):373-379. http://www.cqvip.com/qk/91256b/2012s1/1003447413.html
    [23] Chen B, Gong H, Li X, et al.Spatial-temporal evolution patterns of land subsidence with different situation of space utilization[J].Natural Hazards, 2015, 77(3):1765-1783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da839fac26a5b9f4ff6fe1f9bc44bfee
    [24] 北京市地质矿产勘查开发局.北京城市地质图集[M].北京:地质出版社, 2010.
    [25] 北京市地质矿产勘查开发局, 北京市水文地质工程地质大队.北京地下水[M].北京:中国大地出版社, 2008.
    [26] 吴文佳, 高斯瑶, 吴殿廷.北京市城市化水平演变进程的综合测度[J].经济研究导刊, 2013(22):220-223. http://d.old.wanfangdata.com.cn/Periodical/jjyjdk201322097
    [27] 常艳.城市化发展历程回顾与新型城市化发展趋势分析:以特大城市北京为例[J].理论月刊, 2014(9):138-142. http://d.old.wanfangdata.com.cn/Periodical/llyk201409030
    [28] Zhang Z, Li N, Wang X, et al.A comparative study of urban expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013[J].Remote Sensing, 2016, 8(4966). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000119816
    [29] 张丽平.北京市城市化对城市用水影响机制研究[D].北京: 首都师范大学, 2004.
    [30] 薛琪.关于北京平原地面沉降与城市化关系的遥感应用[D].武汉: 中国地质大学(武汉), 2017.
    [31] Zhu L, Gong H, Teatini P, et al.Land Subsidence due to groundwater withdrawal in the northern Beijing plain, China[J].Engineering Geology, 2015, 193:243-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0752287b8df2a770bafcabfa2b3b7f6b
    [32] Zhang Y, Gong H, Gu Z, et al.Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China[J].Hydrogeology Journal, 2014, 22(2):397-409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b4887ceb9ac5fab4dd9eb2f8e459bb13
    [33] 周毅, 罗郧, 郭高轩, 等.冲洪积平原地面沉降特征及主控因素:以北京平原为例[J].地质通报, 2016, 35(12):2100-2110. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201612018
    [34] 王丽亚, 韩锦平, 刘久荣, 等.北京平原区域地下水流模拟[J].水文地质工程地质, 2009, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200901003
    [35] 王丽亚.北京平原区地下水可持续利用模型研究[D].北京: 中国地质大学(北京), 2014.
    [36] Pham H T, Rühaak W, Schuster V, et al.Fully hydro-mechanical coupled Plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction[J].SoftwareX, 2019, 9(9):15-19. https://www.sciencedirect.com/science/article/pii/S2352711018301286
    [37] Mahmoudpour M, Khamehchiyan M, Nikudel M R, et al.Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran[J].Engineering Geology, 2016, 201:6-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=530e434fb937c0a819938d7f96aed6ce
    [38] 李敏敏.城市化进程下的北京平原地下水开采-地面沉降演化研究[D].武汉: 中国地质大学(武汉), 2016.
    [39] 王金生.北京市平原区地下水动态要素的时间变化及其启示[J].水利学报, 2012(9):1034-1041. http://www.cqvip.com/QK/90347X/201209/43233755.html
  • 加载中
图(12)
计量
  • 文章访问数:  611
  • PDF下载量:  3814
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-14

目录

    /

    返回文章
    返回