Design and application of multifunctional physical model test device for movement and accumulation process of rapid long-runout landslide
-
摘要: 高速远程滑坡运动堆积过程影响因素众多,在物理模型试验装置研发过程中应满足多因素变化需求,从而实现多功能目的。该试验装置初始状态下(垂直角度=20°,水平角度=0°)长3.40 m,宽0.56 m,高1.35 m。设计有滑体体积调节、上滑槽坡度调节和下滑槽水平角度调节三大模块。材料上采用了3 mm厚不锈钢钢板与8 mm厚钢化玻璃2种材料,使用耐久性较好,并且采用分部件组装形式,安装有万向轮,便于实验仪器的搬运。基于砂子与卵石颗粒材料,应用所研发装置,初步开展了高速远程滑坡运动堆积过程物理模型试验,简要分析了滑体坡度、水平角度、滑体高度及基底材质等参数对滑动距离的影响规律。Abstract: There are many factors affecting the movement and accumulation process of rapid long-runout landslide. During the developing the physical model test device, it is necessary to meet the needs of multi-factors, so as to achieve multi-functional purposes. The device is 3.40 m long, 0.56 m wide and 1.35 m high in initial state (vertical angle=20° and horizontal angle=0°). The design includes three modules: volume adjustment of slide body, slope adjustment of upper slide groove and horizontal angle adjustment of horizontal slide groove. Two kinds of materials, 3 mm thick stainless steel plate and 8 mm thick tempered glass, are used as the processing raw materials, leading to good durability. Moreover, the universal wheel is installed in the form of component assembly to facilitate the handling of the experimental instrument. Based on sand and pebble granular materials, the physical model tests with respect to the movement and accumulation process of rapid long-runout landslide are preliminarily carried out by using the developed device. The effects of slope, horizontal angle, height of sliding body and base material on sliding distance are briefly analyzed.
-
表 1 试验装置结构尺寸和性能参数
Table 1. Test equipment structure size and performance parameters
长/m 宽/m 高/m 上滑槽 1.5 0.5 0.3 下滑槽 2.0 0.5 0.4 滑体高度/m 调节范围:0.5~1.3 滑体体积/m3 调节范围0.001~0.200 地
形
条
件滑坡
坡度/(°)调节范围:30~60;
调节间隔:1下滑槽
基底基底材料厚度:8 cm;
基底材料:(粗砂、木板、碎石、黏土等至少3种);
材料含水率:30%~60%;
材料密实度:密实(1.0~0.67)、中密(0.67~0.33)、松散(0.33~0)。括号内为材料的相对密度下滑槽
障碍物下滑槽单方向调节角度范围:0°~90°;
障碍物高度:≤40 cm表 2 试验装置多功能系列试验案例与数据
Table 2. Tet device multi-function series test cases and data
案例 滑体
坡度/
(°)水平
角度/
(°)滑体
高度/
m滑动
距离/
m滑体
材料基底
材料S1 30 0 1 0.33 砂子 钢板 S2 30 0 1 1.19 卵石 砂子 S3 40 0 1.14 1.04 卵石 砂子 S4 50 0 1.28 1.48 卵石 砂子 S5 40 15 1.14 1.48 卵石 砂子 S6 40 30 1.14 0.90 卵石 砂子 S7 40 45 1.14 0.80 卵石 砂子 -
[1] 郝明辉, 许强, 杨磊, 等.滑坡-碎屑流物理模型试验及运动机制探讨[J].岩土力学, 2014, 35(增刊1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018 [2] 郝明辉, 许强, 杨兴国, 等.高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J].岩石力学与工程学报, 2015, 34(3):472-479. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201503004 [3] 陆鹏源, 侯天兴, 杨兴国, 等.滑坡冲击铲刮效应物理模型试验及机制探讨[J].岩石力学与工程学报, 2016, 35(6):1225-1232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201606015 [4] 赵运会, 樊晓一, 冷晓玉.滑坡碎屑流运动特征的模型试验研究[J].人民长江, 2016, 47(9):84-89. http://d.old.wanfangdata.com.cn/Periodical/rmcj201609020 [5] 赵运会, 樊晓一.基于正交设计的滑坡运动参数模型试验[J].山地学报, 2016, 34(1):92-99. http://d.old.wanfangdata.com.cn/Periodical/sdxb201601012 [6] Hsü K J.Catastrophic debris streams (sturzstroms) generated by rockfalls[J].GSA Bulletin, 1975, 86(1):129-140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 [7] Okura Y, Kitahara H, Sammori T, et al.The effects of rockfall volume on runout distance[J].Engineering Geology, 2000, 58(2):109-124. doi: 10.1016/S0013-7952(00)00049-1 [8] Okura Y, Kitahara H, Sammori T.Fluidization in dry landslides[J].Engineering Geology, 2000, 56(3):347-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5fad9da40f5487c65ba07abc0d5e5cb0 [9] Dufresne A.Influence of runout path material on rock and debris avalanche mobility: Field evidence and analogue modelling[D].New Zealand: University of Canterbury, 2009. http://www.researchgate.net/publication/38319343_Influence_of_runout_path_material_on_rock_and_debris_avalanche_mobility_field_evidence_and_analogue_modelling [10] Nicoletti P G, Sorriso-Valvo M.Geomorphic controls of the shape and mobility of rock avalanches[J].Geological Society of America Bulletin, 1991, 103(10):1365-1373. doi: 10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2 [11] Legros F.The mobility of long-runout landslides[J].Engineering Geology, 2002, 63(3/4):301-331. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3901b9ae3bcf2a0f2477e71deebb1d29 [12] Manzella I, Labiouse V.Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows[J].Rock Mechanics and Rock Engineering, 2008, 41(1):133-151. doi: 10.1007/s00603-007-0134-y [13] Crosta G B, Imposimato S, Roddeman D.Numerical modelling of entrainment/deposition in rock and debris-avalanches[J].Engineering Geology, 2009, 109(1):135-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfd4dc2f21676f3f888dd741235e4ce3 [14] Mollon G, Richefeu V, Villard P.Numerical simulation of rock avalanches:Influence of a local dissipative contact model on the collective behavior of granular flows[J].Journal of Geophysical Research-Earth Surface, 2012, 117(F2):1-19. [15] 胡厚田.高速远程滑坡流体动力学理论的研究[M].成都:西南交通大学出版社, 2003. [16] 赵晓彦, 胡厚田, 刘涌江.大型高速滑坡滑动过程中碰撞特性的试验[J].水文地质工程地质, 2003(6):85-88. doi: 10.3969/j.issn.1000-3665.2003.06.021 [17] 赵晓彦, 胡厚田, 齐明柱.云南头寨沟大型岩质高速滑坡碰撞模型试验[J].自然灾害学报, 2003, 12(3):99-103. doi: 10.3969/j.issn.1004-4574.2003.03.016 [18] 刘涌江, 胡厚田, 赵晓彦.高速滑坡岩体碰撞效应的试验研究[J].岩土力学, 2004, 25(2):255-260. doi: 10.3969/j.issn.1000-7598.2004.02.019 [19] 吴文雪, 唐树名, 刘涌江.高速滑坡岩体碰撞破碎的能量分析[J].重庆交通学院学报, 2006, 25(5):101-108. doi: 10.3969/j.issn.1674-0696.2006.05.025 [20] 高杨.高速远程滑坡铲刮动力学分析: 以重庆武隆鸡尾山滑坡为例[D].西安: 长安大学, 2014. http://d.g.wanfangdata.com.cn/Thesis_D558061.aspx [21] 王玉峰, 许强, 程谦恭, 等.复杂三维地形条件下滑坡-碎屑流运动与堆积特征物理模拟实验研究[J].岩石力学与工程学报, 2016, 35(9):1776-1791. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201609006 [22] Wang Y F, Xu Q, Cheng Q G.Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography:Experimental study[J].Rock Mechanics and Rock Engineering, 2016, 49(11):4349-4370. doi: 10.1007/s00603-016-1052-7 [23] Longchamp C, Abellan A, Jaboyedoff M, et al.3-D models and structural analysis of rock avalanches:The study of the deformation process to better understand the propagation mechanism[J].Earth Surface Dynamics, 2016, 4(3):743-755. doi: 10.5194/esurf-4-743-2016