Discovery and geological significance of Nanhua-Sinian fault-depression, Yichang slope
-
摘要: 宜昌斜坡区钻获南方复杂构造区下寒武统水井沱组、下震旦统陡山沱组高含气页岩,首次实现了古老层系页岩气重大发现,南华系-震旦系构造-沉积格局是认识盆地构造属性及古老页岩气富集的关键。基于前人的研究成果,开展了宜昌地区南华系-震旦系沉积岩石特征、地震资料分析。结果表明:宜昌及周缘存在克拉通内Ⅰ型(宜昌型)、克拉通边缘过渡区Ⅱ型(长阳型)断坳结构控制的沉积区类型。在经历了早期断陷、中期成冰、断坳转换及晚期坳陷4个演化阶段,断坳结构控制了陡山沱组及灯影组-水井沱组ⅠⅠ型台地边缘-斜坡和ⅠⅡ型台内洼地及Ⅱ型陆棚相沉积区,富有机质页岩相对发育。结论认为:Ⅰ型、Ⅱ型断坳结构发育区是陡山沱组-水井沱组自生自储页岩气的规模聚集区;Ⅰ型控制下灯影组旁生侧储边缘滩也是天然气聚集的有利场所。Abstract: In the slope of Yichang, the drilling of the Lower Cambrian Shuijingtuo Formation and Lower Sinian Doushantuo Formation with high gas shale in the southern complex structural area announces significant discovery of ancient shale gas.The Nanhua-Sinian tectono-sedimentary framework in Yichang slop is key to understanding the basin tectonic attribute and ancient shale gas accumulates.Based on the previous geological research results, characteristics and seismic data of Nanhua-Sinian were observed and analyzed.It is shown that there are two fault-depression types, Inter-cratonic typeⅠof Yichang and cratonic margin transition zone typeⅡof Changyang.After experienced four evolutionary stages, early fault, middle cryogenian, fault-depression transition and late depression, the fault-depression control platform slope facie of type ⅠⅠ, platform inner depression facie of type ⅠⅡ, and shelf sedimentary facies of type Ⅱ, which belong to Doushantuo and Dengying-Shuijintuo Formations structure sedimentary area, relatively developed organic shale.It is concluded that the zones of type Ⅰ and type Ⅱ, deep fault-depression are shale gas scale areas of source rock-reservoir of Doushantuo and Shuijintuo Formations.In addition, type I is the favorable gathering place of the natural gas reservoir, beside source rock, Dengying Formation platform edge beach.
-
Key words:
- shale gas /
- fault-depression /
- Nanhua-Sinian /
- Yichang slope
-
表 1 华南南华系-震旦系地层序列(据文献[19]修改)
Table 1. Stratigraphic sequence of NanhuaGSinianin South China
-
[1] Ziegler P A, Cloetingh S.Dynamic processes controlling evolution of rifted basins[J].Earth-Science Reviews, 2004, 64(12):1-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=054600c53b1fdaebf9216d3afe707e06 [2] Mann P, Gahagan L, Gordon M B.Tectonic setting of the word's giant oil and gas fields[M]//Hal bouty M T.Giant oil and gas fields of the Decade 1990-1999.Tulsa, Okla: AAPG, 2003, 78: 15-105. [3] Fraser S I, Fraser A J, Llentini M R, et al.Return to rifts-the next wave: Fresh insights into the petroleum geology of globalrift basins[J].Petroleum Geoscience, 2007, 13(2):99-104. doi: 10.1144/1354-079307-749 [4] 凌云, 马志鑫, 杨弘忠, 等.重庆秀山南华纪大塘坡期沉积相分析与锰矿成矿[J].地质科技情报, 2016, 35(6):150-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201606021 [5] 邹才能, 杜金虎, 徐春春, 等.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发, 2014, 41(3):278-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201403004 [6] 李忠权, 刘记, 李应, 等.四川盆地震旦系威远-安岳拉张侵蚀槽特征及形成演化[J].石油勘探与开发, 2015, 42(1):26-33. http://d.wanfangdata.com.cn/Periodical/syktykf201501003 [7] 魏国齐, 杨威, 杜金虎, 等.四川盆地震旦纪早寒武世克拉通内裂陷地质特征[J].天然气工业, 2015, 35(1):34-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201501003 [8] 邹才能, 杜金虎, 徐春春, 等.四川盆地震旦系寒武系特大型气田形成分布, 资源潜力及勘探发现[J].石油勘探与开发, 2014, 41(3):278-293. http://www.cqvip.com/QK/90664X/201403/49757800.html [9] 翟明国, 胡波, 彭澎, 等.华北中新元古代的岩浆作用与多期裂谷事件[J].地学前缘, 2014, 21(1):100-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201401010 [10] 赵帅, 解习农, 刘中戎, 等.古地貌对断陷盆地沉积体系的控制作用:以青藏高原伦坡拉盆地始新统牛堡组为例[J].地质科技情报, 2019, 38(2):53-64. http://www.cqvip.com/QK/93477A/20192/68907581504849574850484855.html [11] 苗凤彬, 谭慧, 王强, 等.湘中涟源凹陷石炭系测水组页岩气保存条件[J].地质科技情报, 2016, 35(6):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201606013 [12] 陈孝红, 危凯, 张保民, 等.湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J].中国地质, 2018, 45(2):207-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201802001 [13] Wang Jiang, Li Zhengxiang.History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J].Pre-cambrian Research, 2003, 122(1/4):141-158. http://www.sciencedirect.com/science/article/pii/S0301926802002097 [14] Hoffman P F, Li Z X.A palaeogeographic context for Neo-proterozoic glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277:158-172. doi: 10.1016/j.palaeo.2009.03.013 [15] Macdonald F A, Schmitz M D, Crowley J L, et al.Calibrating the Cryogenian[J].Science, 2010, 327:1241-1243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdc3fd55bcfe11a90bb0df9ff6f2b776 [16] 孙海清, 黄建中, 杜远生, 等.扬子地块东南缘南华系长安组同位素年龄及其意义[J].地质科技情报, 2014, 33(2):15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201402003 [17] 赵自强, 邢裕盛, 马国干, 等.长江三峡地区生物地层学(1):震旦纪分册[M].北京:地质出版社, 1985:80-82. [18] 全国地层委员会.中国地层指南及中国地层指南说明书[M].修订版.北京:地质出版社, 2001. [19] 尹崇玉, 高林志.中国南华系的范畴、时限及地层划分[J].地层学杂志, 2013, 37(4):534-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201304017 [20] 魏运许, 陈孝红, 李志宏, 等.1: 50 000莲沱幅、分乡场幅、三斗坪幅、宜昌市幅区域地质调查报告[R].2009. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZUGS200910001024.htm [21] 湖北省地质局三峡地层研究组.峡东地区震旦纪至二叠纪地层古生物[M].北京:地质出版社, 1978. [22] 田望学.1: 25万建始县幅(H49C002002)区域地质调查报告[R].2005. [23] 陈孝红, 汪啸风.中国震旦系及显生宇若干年代地层单位的划分及其时限研究专题[R].2002: 1-42. [24] 管树巍, 吴林, 任荣, 等.中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J].石油学报, 2017, 38(1):9-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701002 [25] Nesbitt H W, Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature, 1982, 299:715-717. doi: 10.1038/299715a0 [26] 张天福, 孙立新, 张云, 等.鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J].地质学报, 2016, 90(12):3454-3472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201612013