Origin of siliceous rocks in west Hunan and Hubei Provinces during Late Ediacaran-Early Cambrian, and its geological significance of shale gas
-
摘要: 湖北宜昌地区在寒武系水井沱组取得页岩气重大突破后,中扬子地区下寒武统富有机质页岩受到了更加广泛的关注。为了查明这套富有机质页岩的成因及其与下伏硅质岩之间的内在联系,系统采集了鄂西宜昌地区鄂宜地2井岩家河组和湘西桃源、张家界地区留茶坡组-牛蹄塘组的硅质岩,利用主量元素和稀土元素数据分析了硅质岩成因,并探讨了不同地区、不同沉积模式及其对下寒武统富有机质页岩形成的意义。结果表明:①鄂宜地2井岩家河组硅质岩的Al/(Al+Fe+Mn)值介于0.30~0.68,在Al-Fe-Mn三角判别图和Fe/Ti-Al/(Al+Fe+Mn)图解上集中分布在沉积成因区;稀土元素Eu异常不明显,配分曲线为平坦模式,且(La/Yb)N介于1.01~1.81,指示岩家河组硅质岩为沉积成因。②湘西桃源和张家界地区的硅质岩明显分为两种成因。留茶坡组硅质岩Al/(Al+Fe+Mn)值介于0.03~0.19,在Al-Fe-Mn三角图上靠近Fe一端,稀土元素表现明显的Eu正异常,且配分曲线以重稀土元素相对富集的左倾斜为主,指示明显的热液成因;牛蹄塘组硅质岩则表现相反,指示沉积成因。③埃迪卡拉纪末期,湘西斜坡地区靠近热液喷流中心,因此留茶坡组硅质岩以热液成因为主,而宜昌地区位于局限台地附近,富硅热液因受到阻隔而无法进入,因此硅质岩为沉积成因;至寒武纪早期,随着气候变暖、海平面上升,湘西和鄂西地区海水连通,因此该时期硅质岩均为沉积成因。埃迪卡拉纪末期的热液活动为海洋生物的繁盛提供了大量的磷等无机营养元素,对下寒武统水井沱组/牛蹄塘组富有机质页岩的形成具有重要的意义。沉积成因的硅质页岩相很可能是页岩气的有利相带,这或许能为页岩气勘探提供一个新的思路。Abstract: Followed by the major breakthrough of shale gas in Shuijingtuo Famation of Yichang, Hubei Province, the organic-rich shale in Lower Cambrian has received much wider attention. In order to find out the internal relationship of the organic-rich shale and the underlying siliceous rocks, we have made a systematic study of the west Hubei and Hunan Provinces, including Yanjiahe Formation of YIDI-2 Well, Liuchapo-Niutitang Formation of Taoyuan and Zhangjiajie area. Based on the analysis of major elements and rare earth elements, we discuss in the paper the different origins of siliceous rocks during Late Ediacaran-Early Cambrian, as well as their significance of shale gas. The conclusions are reached: ①The Al/(Al+Fe+Mn) values of YIDI-2 Well are between 0.30-0.68, close to the biogenic origin. In the Al-Fe-Mn and Fe/Ti-Al/(Al+Fe+Mn)decision diagrams, the sample points are also in the non-hydrothermal area. There is no obvious Eu anomaly but flat partition curves in REE, with LaN/YbN values between 1.01-1.81, indicating the lack of hydrothermal activities and the origin of continental margin. Therefore, the siliceous rocks in Yanjiahe Formation of YIDI-2 Well are mainly of nonhydrothermal origin. ② In the Taoyuan and Zhangjiajie area of West Hunan Province, Al/(Al+Fe+Mn) values of Liuchapo Formation are between 0.03-0.19, and the sample points are close to the Fe in the Al-Fe-Mn diagram. Combined with the obvious Eu anomalies and left-inclined partition curves in REE, it is concluded that the siliceous rocks in Liuchapo Formation are hydrothermal origin. However, it has changed into non-hydrothermal origin for the siliceous rocks in Niutitang Formation, which can be inferred by the larger values of Al/(Al+Fe+Mn) (0.29-0.70), the unconspicuous Eu anomalies and flat partition curves of REE. ③During the later period of Ediacara, due to the short distance to the hydrothermal vents, a set of hydrothermal-origin cherts are developed on the west Hunan slope. As for the Yichang area in the restricted basin, because of the blocking of silceous hydrothermal fluid, a set of dolostone is deposited. During the Early Cambrian, followed by the climate warming, sea-level rising and the sea water being connected, a set of biogenic chert is developed both in west Hunan slope and Yichang area. We conclude that the hydrothermal activities that occurred during Late Ediacaran should be of great significance for the generation of organic shales in Shuijingtuo or Niutitang Formations, because of the large supply of nutrient elements, such as phosphorus, for the flourishing of marine organism. Combined with the exploration results of Cambrian shale gas in South China, we consider that the nonhydrothermal siliceous shales are probably the favorable zones, and about to be the main direction of future exploration after more similar discoveries.
-
Key words:
- west Hunan and Hubei /
- Late Ediacaran /
- Early Cambrian /
- origin of siliceous rock /
- organic-rich shale
-
图 1 研究区采样位置图(岩相古地理图据文献[19]修改)
Figure 1. The study area and sampling locations
图 2 湘鄂西岩家河组和留茶坡组地层对比图(碳同位素曲线据文献[8]修改)
Figure 2. Correlation of Yanjiahe Formation and Liuchapo Formation in west Hunan and Hubei Provinces
表 1 鄂宜地2井岩家河组下段硅质岩主量元素分析结果
Table 1. Major element contents in siliceous rocks of Yanjiahe Formation, YIDI-2 Well
样号 井深/m SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失 Al/(Al+Fe+Mn) wB/% 847 1 776.0 62.00 11.99 4.80 1.33 0.984 2.46 5.86 0.206 0.636 0.226 0.014 8.86 0.58 848 1 776.7 62.84 11.31 3.62 1.52 2.60 2.27 5.27 0.217 0.614 1.520 0.013 7.60 0.61 849 1 777.7 74.50 7.81 2.59 2.12 0.713 1.57 3.70 0.165 0.403 0.111 0.020 5.83 0.53 851 1 778.6 73.59 8.54 2.72 1.64 0.946 1.57 3.87 0.169 0.501 0.365 0.018 5.54 0.58 853 1 779.1 63.45 9.44 3.37 1.77 5.14 1.81 4.15 0.203 0.521 3.430 0.014 6.03 0.56 855 1 779.9 91.80 1.62 0.713 1.77 0.326 0.308 0.59 0.125 0.084 0.050 0.027 2.22 0.30 856 1 780.6 63.73 9.97 2.68 1.54 5.33 1.60 4.58 0.212 0.616 3.820 0.010 5.46 0.62 858 1 781.1 64.09 12.66 3.25 1.72 1.45 2.03 5.82 0.203 0.734 1.020 0.015 6.45 0.64 860 1 781.8 60.87 15.24 3.24 2.02 0.522 2.64 6.70 0.224 0.895 0.313 0.013 6.65 0.67 862 1 782.4 59.50 6.33 1.87 1.46 7.78 5.71 2.94 0.139 0.321 0.446 0.021 13.13 0.57 864 1 783.0 84.84 5.32 1.03 1.67 0.657 0.60 2.93 0.138 0.380 0.434 0.020 1.67 0.57 866 1 783.5 88.25 3.50 0.801 3.01 0.364 0.55 1.82 0.128 0.278 0.054 0.036 0.723 0.38 868 1 784.6 83.98 5.89 1.20 1.73 0.365 0.765 3.23 0.133 0.418 0.171 0.019 1.75 0.58 870 1 785.5 69.49 9.23 2.16 1.70 2.80 2.70 4.51 0.163 0.619 0.499 0.016 5.74 0.62 872 1 786.5 73.14 10.56 2.03 1.44 0.626 1.67 5.52 0.181 0.911 0.213 0.013 3.33 0.68 874 1 787.5 65.30 7.48 1.72 1.44 5.23 4.54 3.72 0.146 0.506 0.090 0.020 9.50 0.62 876 1 788.5 63.36 2.82 1.32 2.69 8.78 5.73 1.45 0.114 0.225 0.150 0.037 12.90 0.32 881 1 791.9 71.38 3.59 0.939 1.73 5.96 4.25 1.69 0.108 0.293 0.082 0.056 9.62 0.47 883 1 792.8 82.46 4.78 1.30 2.03 1.33 1.43 2.40 0.144 0.384 0.084 0.030 3.29 0.49 887 1 795.75 70.46 10.29 1.52 1.88 1.99 2.35 5.32 0.154 0.749 0.137 0.017 4.75 0.67 表 2 鄂宜地2井岩家河组下段硅质岩稀土元素分析结果
Table 2. Rare earth element contents in siliceous rocks of Yanjiahe Formation, YIDI-2 Well
样号 井/m La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE (La/Yb)N δEu δCe wB/10-6 847 1 776.0 24.40 36.20 4.93 19.20 3.58 0.76 3.32 0.55 3.41 0.74 2.11 0.34 2.13 0.30 22.20 102.0 1.08 1.03 0.78 848 1 776.7 42.50 63.20 9.52 37.50 6.90 1.46 6.44 1.04 5.98 1.22 3.18 0.45 2.66 0.35 41.80 182.4 1.51 1.03 0.74 849 1 777.7 16.20 23.10 2.97 11.30 2.08 0.44 1.91 0.31 1.89 0.40 1.19 0.19 1.26 0.18 11.50 63.4 1.21 1.04 0.78 851 1 778.6 20.00 30.30 4.24 16.50 3.14 0.68 2.76 0.45 2.66 0.53 1.48 0.23 1.41 0.19 16.00 84.6 1.34 1.08 0.78 853 1 779.1 36.60 51.70 7.71 30.00 5.28 1.12 5.06 0.79 4.58 0.92 2.43 0.34 1.97 0.26 32.10 148.8 1.75 1.02 0.73 855 1 779.9 2.42 3.34 0.39 1.49 0.28 0.11 0.24 0.04 0.26 0.06 0.18 0.03 0.22 0.03 1.76 9.1 1.04 1.99 0.80 856 1 780.6 52.80 72.00 10.70 41.60 7.70 1.76 7.13 1.17 6.94 1.40 3.62 0.48 2.78 0.36 47.00 210.4 1.79 1.11 0.71 858 1 781.1 27.60 37.70 5.05 18.90 3.28 0.73 3.07 0.49 3.01 0.65 1.89 0.30 2.06 0.28 21.30 105.0 1.26 1.08 0.75 860 1 781.8 25.50 36.90 4.47 16.70 2.98 0.61 2.60 0.40 2.50 0.56 1.71 0.30 2.07 0.30 16.70 97.6 1.16 1.03 0.81 862 1 782.4 18.60 30.60 4.63 18.50 3.41 0.78 3.09 0.49 2.70 0.53 1.33 0.18 1.17 0.15 16.40 86.2 1.50 1.13 0.78 864 1 783.0 19.00 37.80 5.38 22.20 4.24 0.95 3.71 0.56 3.00 0.56 1.38 0.18 1.12 0.15 15.50 100.2 1.60 1.12 0.89 866 1 783.5 8.34 14.70 1.71 6.40 1.15 0.33 1.02 0.16 0.90 0.19 0.56 0.09 0.59 0.09 5.04 36.2 1.33 1.43 0.92 868 1 784.6 15.50 27.20 3.56 13.70 2.54 0.54 2.19 0.33 1.75 0.36 0.95 0.14 0.91 0.12 9.82 69.8 1.61 1.07 0.87 870 1 785.5 36.60 64.10 9.44 40.00 8.03 1.74 6.77 1.05 5.38 0.99 2.43 0.33 1.99 0.26 28.50 179.1 1.73 1.11 0.82 872 1 786.5 35.70 61.00 7.38 28.20 4.91 0.99 4.40 0.68 3.88 0.80 2.25 0.34 2.18 0.30 22.00 153.0 1.54 1.00 0.89 874 1 787.5 24.60 36.00 4.56 16.50 2.72 0.59 2.47 0.38 2.24 0.46 1.29 0.20 1.28 0.18 12.70 93.5 1.81 1.07 0.80 876 1 788.5 15.60 24.40 3.54 14.40 2.55 0.55 2.23 0.34 1.87 0.36 0.96 0.13 0.82 0.11 10.20 67.9 1.79 1.083 0.78 881 1 791.9 11.20 17.40 2.35 9.01 1.64 0.39 1.44 0.22 1.31 0.27 0.72 0.11 0.74 0.10 7.01 46.9 1.43 1.191 0.80 883 1 792.8 12.80 20.00 2.59 9.96 1.72 0.47 1.56 0.25 1.46 0.31 0.88 0.13 0.87 0.12 8.43 53.1 1.39 1.347 0.82 887 1 795.75 23.10 36.40 4.59 17.20 3.13 0.69 2.80 0.45 2.71 0.56 1.59 0.25 1.61 0.22 15.20 95.3 1.35 1.094 0.83 表 3 湖南桃源叶溪堉、理公港和张家界田坪剖面留茶坡组-牛蹄塘组硅质岩主量元素分析结果
Table 3. Major element contents in siliceous rocks of Liuchapo-Niutitang Formation in Yexiyu section, Ligonggang section of Taoyuan, Tianping section of Zhangjiajie, Hunan Province
样号 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失 Al/(Al+Fe+Mn) wB/% YXY∈1n-6Si 81.81 6.770 0.030 1.09 0.191 0.614 1.610 0.840 0.346 0.020 0.009 4 6.250 0.80 YXY∈1n-5Si 85.10 4.860 0.013 0.93 0.071 0.412 1.140 0.684 0.254 0.016 0.011 6.170 0.77 YXY∈1n-4Si 82.50 6.390 0.233 1.03 0.045 0.535 1.480 0.825 0.311 0.016 0.008 9 6.230 0.77 YXY∈1n-3Si 84.72 4.410 0.011 0.993 0.119 0.399 1.000 0.613 0.236 0.023 0.008 9 7.090 0.74 YXYZ2l-2Si 69.53 7.390 1.360 0.981 0.135 5.930 1.190 0.590 0.468 0.061 0.020 12.020 0.69 YXYZ2l-3Si 76.09 8.320 0.370 0.659 0.047 0.684 2.180 1.080 0.567 0.017 0.0069 9.530 0.85 LGG∈1n-12Si 91.62 3.010 0.521 1.82 0.023 0.428 0.867 0.070 0.196 0.033 0.021 0.696 0.46 LGGZ2l-11Si 94.73 1.570 0.360 2.16 0.022 0.218 0.482 0.060 0.076 0.028 0.024 < 0.001 0.29 LGGZ2l-10Si 88.82 4.040 1.380 1.54 0.254 0.482 1.480 0.072 0.183 0.224 0.024 0.991 0.49 LGGZ2l-9Si 94.67 0.804 0.047 3.37 0.042 0.153 0.200 0.062 0.050 0.021 0.036 < 0.001 0.13 LGGZ2l-8Si 95.67 0.777 0.030 2.31 0.028 0.129 0.140 0.065 0.046 0.019 0.028 0.423 0.18 LGGZ2l-7Si 96.53 0.563 0.132 1.42 0.019 0.117 0.123 0.060 0.043 0.016 0.046 0.568 0.19 LGGZ2l-6Si 96.00 0.413 0.308 2.06 0.048 0.100 0.086 0.058 0.024 0.038 0.024 0.467 0.10 LGGZ2l-5Si 95.37 0.483 0.0044 2.86 0.025 0.105 0.092 0.060 0.021 0.038 0.039 0.495 0.10 LGGZ2l-4Si 95.35 0.410 0.072 3.08 0.200 0.104 0.080 0.062 0.021 0.143 0.055 < 0.001 0.08 LGGZ2l-3Si 95.69 0.368 0.087 2.60 0.043 0.106 0.071 0.069 0.022 0.017 0.043 0.511 0.08 LGGZ2l-2Si 94.57 0.231 0.011 4.37 0.015 0.088 0.024 0.059 0.015 0.014 0.058 < 0.001 0.03 LGGZ2l-1Si 95.52 0.490 0.594 2.60 0.024 0.110 0.102 0.064 0.025 0.015 0.046 < 0.001 0.09 TP∈1n-1Si 86.54 5.620 0.258 1.36 0.238 0.498 2.860 0.092 0.352 0.246 0.010 1.120 0.70 TP∈1n-2Si 86.56 3.630 1.180 3.04 0.090 0.277 2.010 0.089 0.230 0.103 0.041 2.020 0.36 TPZ2l-3Si 94.18 1.100 0.017 2.85 0.037 0.127 0.475 0.066 0.136 0.023 0.040 < 0.001 0.20 TPZ2l-4Si 84.72 6.000 2.030 1.07 0.030 0.516 2.770 0.091 0.386 0.031 0.007 9 1.500 0.58 TPZ2l-5Si 93.12 1.200 0.247 3.42 0.114 0.160 0.525 0.078 0.138 0.064 0.031 < 0.001 0.18 TPZ2l-6Si 95.15 0.626 0.243 2.79 0.023 0.104 0.166 0.076 0.042 0.013 0.045 0.232 0.12 表 4 湖南桃源叶溪堉、理公港和张家界田坪剖面留茶坡组-牛蹄塘组硅质岩稀土元素分析结果
Table 4. Rare earth element contents in siliceous rocks of Liuchapo-Niutitang Formation in Yexiyu section, Ligonggang section of Taoyuan, Tianping section of Zhangjiajie, Hunan Province
样品名 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE (La/Yb)N δEu δCe wB/10-6 YXY∈1n-6 14.60 29.20 2.97 10.20 1.38 0.30 1.21 0.19 1.26 0.30 0.94 0.16 1.18 0.16 7.80 64.05 1.17 1.09 1.05 YXY∈ 1 n-5 12.10 23.40 2.37 7.99 1.10 0.27 1.05 0.18 1.26 0.29 0.87 0.14 0.95 0.13 7.81 52.10 1.20 1.18 1.04 YXY∈ 1 n-4 15.20 27.20 2.70 8.91 1.11 0.29 1.01 0.16 1.11 0.27 0.88 0.15 1.08 0.16 7.38 60.23 1.33 1.29 1.01 YXY∈ 1 n-3 12.50 23.50 2.43 8.43 1.22 0.28 1.07 0.17 1.11 0.26 0.83 0.14 0.99 0.15 7.27 53.08 1.19 1.15 1.01 YXYZ 2 l-2 26.50 48.80 4.80 18.00 3.31 0.78 2.94 0.48 2.90 0.62 1.81 0.30 1.98 0.27 17.70 113.49 1.26 1.17 1.03 YXYZ 2 l-3 22.50 42.10 4.30 14.80 1.88 0.39 1.82 0.29 1.99 0.48 1.48 0.26 1.71 0.25 14.50 94.25 1.24 0.99 1.02 LGG∈ 1 n-12 5.02 8.41 1.13 4.27 0.91 0.27 0.90 0.16 1.08 0.23 0.69 0.12 0.81 0.11 6.08 24.11 0.58 1.40 0.84 LGGZ 2 l-11 3.38 5.40 0.57 1.96 0.36 0.09 0.30 0.04 0.25 0.05 0.16 0.03 0.18 0.02 1.36 12.79 1.77 1.30 0.92 LGGZ 2 l-10 3.00 5.90 0.96 5.08 2.00 0.53 1.80 0.30 1.80 0.34 0.85 0.12 0.77 0.10 8.46 23.55 0.37 1.31 0.82 LGGZ 2 l-9 2.39 3.16 0.52 1.97 0.39 0.15 0.37 0.07 0.50 0.12 0.35 0.06 0.43 0.07 2.61 10.54 0.52 1.85 0.67 LGGZ 2 l-8 3.93 6.53 0.99 4.24 0.85 0.21 0.82 0.16 1.18 0.26 0.75 0.12 0.84 0.12 7.03 21.00 0.44 1.18 0.79 LGGZ 2 l-7 2.58 4.96 0.72 3.27 0.64 0.22 0.63 0.12 0.89 0.23 0.75 0.14 0.98 0.15 8.43 16.28 0.25 1.63 0.86 LGGZ 2 l-6 4.42 7.15 1.08 4.81 1.12 0.25 1.15 0.20 1.38 0.32 1.00 0.16 1.11 0.16 11.60 24.31 0.38 1.03 0.78 LGGZ 2 l-5 3.41 6.19 1.04 4.90 1.32 0.34 1.38 0.28 1.98 0.44 1.29 0.21 1.43 0.20 13.90 24.41 0.22 1.18 0.78 LGGZ 2 l-4 4.30 4.24 0.91 4.37 1.88 0.51 2.08 0.35 2.23 0.47 1.30 0.20 1.27 0.18 15.70 24.29 0.32 1.21 0.51 LGGZ 2 l-3 1.94 2.54 0.35 1.53 0.38 0.12 0.46 0.09 0.69 0.17 0.54 0.08 0.65 0.09 6.53 9.64 0.28 1.35 0.73 LGGZ 2 l-2 1.75 3.09 0.74 3.81 1.50 0.47 1.67 0.36 2.43 0.46 1.12 0.16 1.04 0.12 10.30 18.72 0.16 1.39 0.64 LGGZ 2 l-1 4.30 4.02 0.96 3.82 0.82 0.20 0.82 0.15 1.00 0.22 0.64 0.10 0.71 0.10 7.31 17.86 0.57 1.14 0.47 TP∈ 1 n-1 18.80 26.40 3.87 14.20 2.55 0.59 2.42 0.39 2.39 0.51 1.47 0.24 1.66 0.24 14.00 75.73 1.07 1.11 0.73 TP∈ 1 n-2 14.70 19.80 2.97 10.70 1.79 0.48 1.71 0.27 1.64 0.34 1.00 0.17 1.19 0.17 8.40 56.93 1.16 1.29 0.71 TPZ 2 l-3 2.23 3.37 0.54 1.83 0.25 0.31 0.28 0.05 0.36 0.09 0.31 0.05 0.40 0.06 2.38 10.12 0.53 5.50 0.73 TPZ 2 l-4 14.30 20.30 2.25 6.40 0.56 0.19 0.67 0.10 0.84 0.24 0.87 0.18 1.35 0.20 6.14 48.45 1.00 1.46 0.85 TPZ 2 l-5 6.44 9.20 1.40 4.87 0.76 0.44 0.70 0.11 0.71 0.16 0.46 0.08 0.54 0.08 3.91 25.95 1.12 2.83 0.73 TPZ 2 l-6 0.73 1.40 0.20 0.86 0.25 0.14 0.31 0.07 0.57 0.13 0.40 0.06 0.48 0.07 3.35 5.67 0.14 2.36 0.87 -
[1] 梁狄刚, 郭彤楼, 边立曾, 等.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质, 2009, 14(2):1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz200902001 [2] 张丽雅, 李艳霞, 李净红, 等.页岩气成藏条件及中上扬子区志留系页岩气勘探前景分析[J].地质科技情报, 2011, 30(6):90-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201106012 [3] 赵瞻, 余谦, 周小琳, 等.重庆黔江地区下寒武统牛蹄塘组页岩气成藏条件[J].地质科技情报, 2017, 36(3):122-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201703016 [4] 吴小力, 李荣西, 李尚儒, 等.下扬子地区海陆过渡相页岩气成藏条件与主控因素:以萍乐坳陷二叠系乐平组为例[J].地质科技情报, 2018, 37(1):160-168. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201801022.htm [5] 张大伟.中国非常规油气资源及页岩气未来发展趋势[J].国土资源情报, 2016, 11:3-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyqb201611001 [6] 郭彤楼, 张汉荣等四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201401003 [7] 陈孝红, 王传尚, 刘安, 等.湖北宜昌地区寒武系水井沱组探获页岩气[J].中国地质, 2017, 44(1):188-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701013 [8] 陈孝红, 危凯, 张保民, 等.湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J].中国地质, 2018, 45(2):207-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201802001 [9] 陈孝红, 张保民, 陈林, 等.鄂西宜昌地区晚奥陶世-早志留世页岩气藏的主控地质因素与富集模式[J].地球学报, 2018, 39(3):257-268. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201803001.htm [10] 张同伟, 张亚军, 贾敏, 等.中国南方寒武系海相页岩含气性主控因素的科学问题[J].矿物岩石地球化学通报, 2018, 37(4):572-579. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201804002.htm [11] 罗胜元, 刘安, 李海, 等.中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素[J].石油实验地质, 2019, 41(1):56-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201901009 [12] 李海, 刘安, 罗胜元, 等.鄂西宜昌斜坡区寒武系页岩储层发育特征:以鄂宜页1井为例[J].石油实验地质, 2019, 41(1):76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201901011 [13] 邱振, 王清晨.广西来宾中上二叠统硅质岩海底热液成因的地球化学证据[J].中国科学:地球科学, 2011, 41(5):725-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201105011 [14] Murry R W.Chemical criteria to identify the depositional environment of chert: General principles and applications[J].Sedimentary Geology, 1994, 90(3/4):213-232. http://cn.bing.com/academic/profile?id=ddf5916e753aef27fd7ce21e3f88d20c&encoded=0&v=paper_preview&mkt=zh-cn [15] 张位华, 姜立君, 高慧, 等.贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J].矿物岩石地球化学通报, 2003, 22(2):174-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200302020 [16] 杨恩林, 陈恨水, 陈焕, 等.黔东留茶坡组硅质岩元素地球化学特征与形成环境[J].矿物学报, 2011, 31(3):406-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201103013 [17] 胡亚, 陈孝红.三峡地区前寒武纪-寒武纪转折期黑色页岩地球化学特征及其环境意义[J].地质科技情报, 2017, 36(1):61-71. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201701009.htm [18] 张亚冠, 杜远生, 徐亚军, 等.湘中震旦纪-寒武纪之交硅质岩地球化学特征及成因环境研究[J].地质论评, 2015, 61(3):499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201503004 [19] 马永生, 陈洪德, 王国力, 等.中国南方构造-层序岩相古地理图集(震旦纪-新近纪)[M].北京:科学出版社, 2009. [20] 王丹, 凌洪飞, 李达, 等.三峡地区岩家河埃迪卡拉系-寒武系界线剖面碳同位素地层学研究[J].地层学杂志, 2012, 36(1):21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201201003 [21] 薛耀松, 唐天福.皖南与湘西晚震旦世地层的划分与对比[J].地层学杂志, 1989, 13(1):52-58. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ198901008.htm [22] 王约, 黄再琴, 陈洪德, 等.华南留茶坡组与灯影组的地层对比[J].吉林大学学报:地球科学版, 2012, 42(增刊1):328-335. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ2012S1037.htm [23] 尹恭正, 王砚耕, 钱逸.贵州震旦系与寒武系分界的初步研究[J].地层学杂志, 1982, 6(4):286-293. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ198204005.htm [24] Boström K, Peterson M N A.The Origin of aluminium-poor ferromangnoan sediments in area of high heat flow on the East Pacific Rise[J].Marine Geology, 1969, 7(5):427-447. doi: 10.1016/0025-3227(69)90016-4 [25] Adachi M, Yamamoto K, Sugisaki R.Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity[J].Sedimentary Geology, 1986, 47:125-148. doi: 10.1016/0037-0738(86)90075-8 [26] Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J].Sedimentary Geology, 1987, 52:65-108. doi: 10.1016/0037-0738(87)90017-0 [27] Boström K.Genesis of ferromanganese deposit-diagnostic criteria for recent and old deposits[M]//Rona P A.Hydrothermal Process at Seafloors Spring Centers.New York : Plenum Press, 1983: 473-489. [28] 杨水源, 姚静.安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J].高校地质学报, 2008, 14(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200801005 [29] Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al.Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California:Assessing REE sources to fine-grained marine sediments[J].Geochimica et Cosmochimica Acta, 1991, 55:1875-1895. doi: 10.1016/0016-7037(91)90030-9 [30] Douville E, Bienvenu P, Charlou J L, et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta, 1999, 63:627-643. doi: 10.1016/S0016-7037(99)00024-1 [31] Owen A W, Armstrong H A, Floyd J D.Rare earth element geochemistry of upper Ordovician cherts from the Southern Upland of Scotland[J].Journal of the Geological Society of London, 1999, 156:191-204. doi: 10.1144/gsjgs.156.1.0191 [32] Guo Q J, Shields G A, Liu C Q.Trace element chemostratigraphy of two Ediacaran- Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254:194-216. doi: 10.1016/j.palaeo.2007.03.016 [33] Frimmel H E.Trace element distribution in Neoproterozoic carbonates as palaeo- environmental indicator[J].Chemical Geology, 2009, 258:338-353. doi: 10.1016/j.chemgeo.2008.10.033 [34] 杜远生, 朱杰, 顾松竹, 等.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J].中国科学:地球科学, 2007, 37(10):1314-1329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200710004