Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang
-
摘要: 要:基于雪峰隆起西缘下寒武统牛蹄塘组页岩地表露头、岩心、薄片和扫描电镜下天然裂缝特征参数的观察与统计,并借助相应样品的实验测试数据,对牛蹄塘组页岩裂缝的发育特征与主控因素进行了深入分析,并探讨了裂缝发育与含气性之间的关系。结果表明:研究区牛蹄塘组页岩宏观裂缝以构造缝为主,成岩缝次之,构造缝包括高、中角度剪切缝,低角度滑脱缝及少量张裂缝,主要为6期形成,其中第1期高角度剪切缝最为发育,裂缝优势方位为NWW向、NNW-近SN向与NE向。微裂缝主要为层间缝和顺层缝。岩心宏观裂缝多被充填,后期裂缝的充填程度低于前期裂缝。裂缝的发育受构造作用、岩性和矿物组分、岩层厚度、有机碳含量、成岩作用及异常流体高压等多种因素影响,其中构造应力与构造部位是裂缝发育的主要控制因素,区域构造应力决定了裂缝的性质与整体发育特征,局部构造应力与构造部位使裂缝的分布具有差异性,应力相对集中且变化梯度大、地层变形强烈的构造部位更易形成裂缝。此外,页岩在脆性矿物含量高、单层厚度小、成岩阶段晚、有机碳含量高、存在异常高流体压力时,裂缝更发育。研究区牛蹄塘组天然裂缝的发育及伴生的大量微裂缝有效改善了页岩的储渗性能,对提高含气量起重要作用。Abstract: Based on outcrop, coring, thin section and the SEM observation and statistics of shale fracture characteristics in the Lower Cambrian Niutitang Formation, western margin of Xuefeng uplift, as well as the corresponding sample analysis test data, this paper analyzes in detail the development characteristics and major controlling factors of shale fracture in Niutitang Formation and the relationship between fracture development and gas content. The results indicate that macro fractures in Niutitang Formation are dominated by structural fractures, such as high dip-angle shearing fractures, low dip-angle slip fractures and some extensional fractures. Structural fractures are mainly formed in 6 stages. Among them the high-angle shear fractures in first stage are mostly developed, and the predominant orientations of fractures are NWW, NNW-near SN and NE directions. The diagenetic fractures are fewer than structural fractures. The micro-fractures mainly include interlayer and bedding fractures. The macro fractures in the core are mostly filled, and the filling degree of the later fractures is lower than that of the earlier fractures. The fracture development is influenced by many factors, such as tectonism, lithology and mineral composition, thickness, organic carbon content, diagenesis and high fluid pressure, among which structural stress and structural position are the main controlling factors. Regional structural stress determines the nature and overall development characteristics of fractures. Local structural stress and structural position make the distribution of fractures different. Fractures are more developed in the structural position with relatively concentrated stress, large stress gradient and strong deformation. In addition, shale with high content of brittle minerals, small thickness of single layer, late diagenetic stage, high content of organic carbon and high fluid pressure has well fracture development.The development of macro fractures and a large number of associated micro-fractures in Niutitang Formation effectively improve the reservoir permeability of shale and thus play an important role in improving gas content.
-
Key words:
- fracture /
- development characteristics /
- major controlling factors /
- Niutitang Formation /
- shale gas /
- Xuefeng uplift
-
图 4 牛蹄塘组岩心裂缝类型及特征
a.高角度剪切缝,两期交切关系,一期无充填,另一期方解石充填,湘吉地1井,1 878.8 m;b.高角度剪切缝与层理缝(蓝色箭头指示),剪切缝方解石充填,湘吉地1井, 1 860.75 m;c.高角度剪切缝与低角度剪切缝,交切关系,湘吉地1井, 1 838.8 m;d.滑脱缝,镜面现象,湘张地1井, 1 990.0 m;e.滑脱带滑脱缝强烈发育,缝面擦痕明显,岩心沿裂缝破碎,湘吉地1井, 2 009 m;f.张裂缝,方解石充填,见岩石碎屑,湘吉地1井, 2 015.9 m;g.泄水缝,泥质与方解石充填,湘吉地1井, 1 993.2 m;h, i.异常高压相关缝,方解石充填,湘吉地1井, 2 036.8 m、湘张地1井, 1 977.9 m;j~l.多期裂缝相互交切,构成网状裂缝系统,湘吉地1井, 2 040,2 010.7,2 019.1 m(蓝色箭头指示裂缝形成时间早于红色箭头指示裂缝)
Figure 4. Types and characteristics of fractures in Niutitang Formation core
表 1 牛蹄塘组岩心构造缝发育期次与特征
Table 1. Stages and characteristics of structural fracture in Niutitang Formation core
裂缝
期次倾角/
(°)充填程度 充填物 裂缝类型 特征描述 发育程度 1 55~70 全、半充填 以方解石为主,伴随
少量石英、黄铁矿、泥质剪切缝 组内均有分布,延伸较长、开度相对小,缝内
发育未充填次级孔、缝,见共轭缝非常发育 2 5~10 全充填 以方解石为主,伴随少量石英 剪切缝 开度变化大,延伸不长,切割前期裂缝 欠发育 3 70~85 全充填 方解石 剪切缝 一组多条集中发育,开度小,延伸短 发育 4 2~75 全、半充填与未充填 以方解石为主,
伴随少量泥质滑脱缝 滑脱带内密集发育,组成网状系统,以低角度
为主,开度变化大,擦痕明显,岩心沿裂缝开裂局部发育,滑脱带内极为发育 5 60~85 未充填 无 剪切缝 缝面平直光滑,延伸长,岩心沿裂缝开裂 发育 6 5~80 全、半充填 方解石 张裂缝、剪切缝 局部构造缝、延伸短;张裂缝缝面粗糙,开度
较大,分布局限仅局部发育 -
[1] 丁文龙, 李超, 李春燕, 等.页岩裂缝发育主控因素及其对含气性的影响[J].地学前缘, 2012, 19(2):212-220. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201202031.htm [2] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1):28-36. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201401003.htm [3] 郭旭升, 胡东风, 魏祥峰, 等.四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J].石油与天然气地质, 2016, 37(6):799-808. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201606002.htm [4] 王宏语, 杨润泽, 张峰, 等.富有机质泥页岩岩相表征的研究现状与趋势[J].地质科技情报, 2018, 37(2):141-148. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201802020.htm [5] Hill D G, Nelson C R.Gas productive fractured shales: An overview and update[J].Gas TIPS, 2000, 6(2):4-13. http://cn.bing.com/academic/profile?id=e3cf7d4f22ed6ef98e5079913ace7d76&encoded=0&v=paper_preview&mkt=zh-cn [6] Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin, 2002, 86(11):1921-1938. http://cn.bing.com/academic/profile?id=1c215cdf0484ae3b2e46e6af3fed3c05&encoded=0&v=paper_preview&mkt=zh-cn [7] 李新景, 胡素云, 程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发, 2007, 34(4):392-400. http://www.cnki.com.cn/Article/CJFDTotal-SKYK200704003.htm [8] Gale J F W, Reed R M, Holder J.Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J].AAPG Bulletin, 2007, 91(4):603-622. doi: 10.1306/11010606061 [9] Jarvie D M, Hill R J, Ruble T E, et al.Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4):475-499. doi: 10.1306/12190606068 [10] Slatt R M, O"Brien N R.Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12):2017-2030. doi: 10.1306/03301110145 [11] 张琳婷, 郭建华, 焦鹏, 等.湘西北下寒武统牛蹄塘组页岩气藏形成条件与资源潜力[J].中南大学学报:自然科学版, 2014, 45(4):1163-1173. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201404022.htm [12] 黄俨然, 肖正辉, 焦鹏, 等.湘西北牛蹄塘组探井页岩气富集要素的对比和启示[J].中南大学学报:自然科学版, 2018, 49(9):2240-2248. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201809017.htm [13] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):499-510. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201604002.htm [14] 林拓, 张金川, 包书景, 等.湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征:以常页1井为例[J].天然气地球科学, 2015, 26(2):312-319. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201502016.htm [15] 孟凡洋, 陈科, 包书景, 等.湘西北复杂构造区下寒武统页岩含气性及主控因素分析:以慈页1井为例[J].岩性油气藏, 2018, 30(5):29-39. http://www.cnki.com.cn/Article/CJFDTotal-YANX201805004.htm [16] 梅廉夫, 邓大飞, 沈传波, 等.江南-雪峰隆起构造动力学与海相油气成藏演化[J].地质科技情报, 2012, 31(5):85-93. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201205013.htm [17] 邓大飞, 梅廉夫, 沈传波, 等.江南-雪峰隆起北缘海相油气富集主控因素和破坏机制[J].吉林大学学报:地球科学版, 2014, 44(5):1466-1477. doi: 10.13278/j.cnki.jjuese.201405107 [18] 刘安, 李旭兵, 王传尚, 等.湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J].沉积学报, 2013, 31(6):1122-1132. http://www.cnki.com.cn/Article/CJFDTotal-CJXB201306020.htm [19] 王传尚, 曾雄伟, 李旭兵, 等.雪峰山西侧地区寒武系地层划分与对比[J].中国地质, 2013, 40(2):439-448. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201302009.htm [20] 范存辉, 李虎, 钟城, 等.川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J].石油学报, 2018, 39(4):379-390. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201804002.htm [21] 苗凤彬, 王强, 白云山, 等.湘中涟源凹陷石炭系测水组页岩气保存条件[J].地质科技情报, 2016, 35(6):90-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606014.htm [22] 曾联波, 肖淑蓉.低渗透储集层中的泥岩裂缝储集体[J].石油实验地质, 1999, 21(3):266-269. http://www.cnki.com.cn/Article/CJFDTotal-SYSD199903014.htm [23] 王濡岳, 丁文龙, 龚大建, 等.渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J].石油学报, 2016, 37(7):832-845. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201607002.htm [24] 赵佩, 李贤庆, 孙杰, 等.川南地区下古生界页岩气储层矿物组成与脆性特征研究[J].现代地质, 2014, 28(2):396-403. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ201402018.htm [25] 夏遵义, 马海洋, 房堃, 等.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质, 2019, 41(2):134-141. http://www.cnki.com.cn/Article/CJFDTotal-SYSD201901019.htm [26] 曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社, 2008. [27] 巩磊, 高铭泽, 曾联波, 等.影响致密砂岩储层裂缝分布的主控因素分析:以库车前陆盆地侏罗系-新近系为例[J].天然气地球科学, 2017, 28(2):199-208. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201702003.htm [28] 苗凤彬, 曾联波, 祖克威, 等.四川盆地梓潼地区须家河组储集层裂缝特征及控制因素[J].地质力学学报, 2016, 22(1):76-84. http://www.cnki.com.cn/Article/CJFDTotal-DZLX201601008.htm [29] Lyu W Y, Zeng L B, Zhang B J, et al.Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China[J].Marine and Petroleum Geology, 2017, 83:60-72. doi: 10.1016/j.marpetgeo.2017.03.004 [30] 昝博文, 刘树根, 白志强, 等.川西南威远地区龙马溪组页岩储层孔隙发育特征及控因素分析[J].地质科技情报, 2017, 36(2):65-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702008.htm [31] 王建波, 冯明刚, 严伟, 等.焦石坝地区页岩储层可压裂性影响因素及计算方法[J].断块油气田, 2016, 23(2):216-220, 225. http://www.cnki.com.cn/Article/CJFDTotal-DKYT201602020.htm [32] 吴晶晶, 张绍和, 曹函, 等.湘西北下寒武统牛蹄塘组页岩气储层可压裂性评价[J].中南大学学报:自然科学版, 2018, 49(5):1160-1168. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201805018.htm [33] Bowker K A.Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J].AAPG Bulletin, 2007, 91(4):523-533. doi: 10.1306/06190606018 [34] 聂海宽, 唐玄, 边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报, 2009, 30(4):484-491. http://www.cnki.com.cn/Article/CJFDTotal-SYXB200904003.htm