Detection of concealed ore bodies in Jiajika rare metal orefield using geogas prospecting technology
-
摘要: 以甲基卡稀有金属矿区X03号矿体和烧炭沟矿体2个隐伏矿体作为研究对象,采用主动吸气法,以5%稀硝酸溶液作为捕集剂进行地气测量试验研究。结果表明,地气捕集液中Li、Be、Rb、Cs、Na、B等元素在矿体上方出现多点连续的组合异常,可以指示地表以下30~100 m的隐伏矿体。X03号矿体35号勘探线上,地气中成矿元素异常与土壤中元素含量之间没有相关性,表明地气异常并不是土壤元素含量所形成的,而是来源于隐伏矿体,是隐伏矿体的直接信息反映。地气异常表现为顶部异常特征,隐伏矿体位于异常的下部。甲基卡稀有金属矿区采用地气测量技术寻找隐伏矿体时,在成矿地质条件研究的基础上,结合电法等地球物理资料,可在地气异常的上方布置钻探工程进行钻探验证。Abstract: An experimental research was conducted on two concealed deposits, X03 and Shaotangou, in Jiajika rare metal orefield. The geogas was collected by an air sampler, and the particles in the gas were captured by 5% dilute nitric acid solution. The results show that continuous anomalies of Li, Be, Rb, Cs, Na and B are observed from the two deposits, and can be used to explore the ore bodies 30-100 m below the earth surface. On Line 35 of X03 ore body, there is no correlation between the content of the mineral elements in the geogas and its total content in the soil. This indicates that the anomalies are formed by the elements in the geogas, not in the soil. Hence, the mineralization information is included in the geogas. The anomalies of the elements in the geogas show in top halos, located over the concealed deposits. Based on the study of metallogenic geological conditions and geophysical data, such as electrical method, drilling engineering can be arranged above the anomalies of elements in geogas for drilling verification.
-
Key words:
- geogas prospecting /
- rare metal mineral /
- concealed deposit /
- Jiajika
-
表 1 X03号矿体35号勘探线地气元素含量分析结果
Table 1. The element analysis results of geogas in 35 exploration line of X03 ore body
样号 Li Be Rb Cs Nb Ta Sn B Na ρB/(ng·mL-1) ρB/(μg·mL-1) X03-35-01 0.302 0.001 0.156 0.016 0.014 0.000 3 1.07 10.3 0.78 X03-35-03 0.475 0.008 0.301 0.021 0.021 0.000 7 1.08 58.4 2.49 X03-35-05 0.318 0.006 0.164 0.022 0.014 0.001 7 1.07 16.8 1.18 X03-35-06 0.309 0.004 0.132 0.019 0.010 0.000 2 1.07 9.4 0.92 X03-35-07 0.253 0.005 0.184 0.023 0.028 0.000 9 1.09 28.8 1.37 X03-35-08 0.510 0.006 0.356 0.030 0.011 0.000 9 1.14 41.1 3.53 X03-35-09 0.736 0.005 0.479 0.032 0.028 0.001 6 1.09 67.2 4.63 X03-35-11 0.245 0.001 0.158 0.017 0.020 0.000 6 1.12 13.1 1.03 X03-35-13 0.164 — 0.144 0.018 0.013 0.000 7 1.05 12.0 1.05 X03-35-16 0.363 — 0.269 0.025 0.023 0.000 9 1.15 44.8 2.22 X03-35-18 0.128 0.006 0.135 0.015 0.014 0.000 6 4.74 7.5 0.82 X03-35-19 0.240 0.010 0.202 0.022 0.016 0.000 8 10.94 32.5 1.60 X03-35-22 0.263 0.005 0.182 0.023 0.024 0.001 1 17.40 45.8 1.44 X03-35-23 0.359 — 0.321 0.031 0.022 0.000 9 4.11 48.6 2.47 X03-35-24 0.182 — 0.163 0.022 0.017 0.000 7 4.12 14.7 1.18 X03-35-25 0.210 0.005 0.222 0.052 0.016 0.000 7 4.04 20.2 1.40 平均值 0.316 0.004 0.223 0.024 0.018 0.000 8 3.52 29.4 1.76 标准偏差 0.152 0.003 0.098 0.009 0.006 0.000 4 4.54 19.3 1.07 背景值 0.233 0.001 0.157 0.019 0.014 0.000 7 1.08 12.9 1.04 异常下限 0.385 0.004 0.255 0.028 0.020 0.001 1 5.62 32.1 2.12 表 2 烧炭沟矿体131号勘探线地气元素含量分析结果
Table 2. The element analysis results of geogas in 131 exploration line of Shaotangou ore body
样号 Li Be Rb Cs Nb Ta Sn B Na ρB/(ng·mL-1) ρB/(μg·mL-1) ST-131-1 0.289 0.006 0.258 0.022 0.039 0.0020 1.22 29.8 1.88 ST-131-4 0.273 0.005 0.208 0.021 0.022 0.0021 1.17 26.4 1.41 ST-131-6 0.231 0.002 0.175 0.021 0.033 0.0020 1.18 19.1 1.13 ST-131-8 0.233 0.005 0.179 0.019 0.026 0.0017 1.12 23.5 1.38 ST-131-10 0.380 0.004 0.252 0.030 0.032 0.0016 1.16 58.1 2.14 ST-131-11 0.493 0.002 0.264 0.036 0.038 0.0007 1.20 50.4 2.38 ST-131-12 0.292 0.004 0.187 0.017 0.027 0.0004 1.13 36.2 1.66 ST-131-13 0.317 0.006 0.219 0.022 0.020 0.0018 1.14 52.0 1.87 ST-131-14 0.233 0.006 0.164 0.016 0.028 0.0021 1.23 16.4 1.04 ST-131-16 0.284 0.008 0.236 0.032 0.026 0.0008 1.19 19.4 1.06 ST-131-17 0.494 0.006 0.477 0.081 0.025 0.0003 1.31 61.8 2.50 ST-131-19 0.252 0.004 0.253 0.019 0.030 0.0007 1.18 30.1 1.57 ST-131-21 0.190 0.001 0.184 0.016 0.020 0.0011 1.13 18.6 1.11 ST-131-22 0.349 0.002 0.314 0.024 0.028 0.0009 1.21 41.4 1.93 ST-131-24 0.245 0.002 0.411 0.044 0.069 0.0022 1.31 37.0 0.99 平均值 0.304 0.004 0.252 0.028 0.031 0.0014 1.20 34.7 1.60 标准偏差 0.091 0.002 0.089 0.017 0.012 0.0007 0.06 15.1 0.50 背景值 0.239 0.002 0.186 0.019 0.026 0.0008 1.16 21.4 1.12 异常下限 0.330 0.004 0.275 0.036 0.038 0.0015 1.20 36.5 1.62 -
[1] 王登红, 付小方.四川甲基卡外围锂矿找矿取得突破[J].岩矿测试, 2013, 32(6): 987-987. [2] 王登红, 王瑞江, 李建康, 等.中国三稀矿产资源战略调查研究进展综述[J].中国地质, 2013, 40(2):361-370. http://qikan.cqvip.com/Qikan/Article/Detail?id=45861643 [3] 付小方, 侯立玮, 王登红, 等.四川甘孜甲基卡锂辉石矿矿产调查评价成果[J].中国地质调查, 2014, 1(3):37-43. http://www.cnki.com.cn/Article/CJFDTotal-DZDC201403007.htm [4] 付小方, 袁蔺平, 王登红, 等.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J].矿床地质, 2015, 34(6):1172-1186. http://d.wanfangdata.com.cn/Periodical/kcdz201506007 [5] 唐国凡, 吴盛先.四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告[R].成都:四川地矿局, 1984. [6] 王学求, 叶荣.纳米金属微粒发现:深穿透地球化学的微观证据[J].地球学报, 2011, 32(1):7-12. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201101004.htm [7] 姚文生, 王学求, 张必敏, 等.苗.鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验[J].地学前缘, 2012, 19(3):167-176. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201203019.htm [8] 王学求.勘查地球化学近十年进展[J].矿物岩石地球化学通报, 2013, 32(2):190-197. http://qikan.cqvip.com/Qikan/Article/Detail?id=45359011 [9] Mann A W, Birrell R D, Fedikow M A F, et al.Vertical ionic migration: Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry Exploration Environment Analysis, 2005, 5(3): 201-210. http://www.researchgate.net/publication/237712518_Vertical_ionic_migration_Mechanisms_soil_anomalies_and_sampling_depth_for_mineral_exploration [10] Cameron E M, Hamilton S M, Leybourne M I, et al.Finding deeply buried deposits using geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2004, 4(1):7-32. [11] 王发明, 翟玉林, 李艳军, 等.青海大场金矿田北缘灭格滩矿区土壤地球化学异常信息提取及找矿预测[J].地质科技情报, 2015, 34(5):127-133. http://www.cqvip.com/QK/93477A/201505/666222169.html [12] 刘宜政, 高建国, 余晓霞, 等.基于矿床三维地质建模的云南会泽某矿段隐伏矿体预测[J].地质科技情报, 2014, 33(6):164-169. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201406023.htm [13] 张传昱, 张均, 李婉婷, 等.安徽上成金矿床Ⅲ号矿体原生晕特征及深部预测[J].地质科技情报, 2013, 32(3):159-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201303024 [14] 童纯菡, 李巨初.地壳内上升气流对物质的迁移及地气测量原理[J].矿物岩石, 1997, 17(3):83-88. http://www.cnki.com.cn/Article/CJFDTotal-KWYS703.014.htm [15] 王学求.寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J].物探与化探, 1998, 22(2):81-89, 108. http://www.cqvip.com/Main/Detail.aspx?id=3039836 [16] 谢学锦, 王学求.深穿透地球化学新进展[J].地学前缘, 2003, 10(1):225-238. http://d.wanfangdata.com.cn/Periodical/dxqy200301027 [17] 周四春, 刘晓辉, 童纯菡, 等.地气测量技术及在隐伏矿找矿中的应用研究[J].地质学报, 2014, 88(4):736-754. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201404025.htm [18] Kristiansson K, Malmqvist L, Persson W.Geogas prospecting: A new tool in the search for concealed mineralizations[J].Endeavour, 1990, 14(1):28-33. http://www.sciencedirect.com/science/article/pii/S0160932705800493 [19] 童纯菡, 李巨初, 葛良全, 等.地气物质纳米微粒的实验观测及其意义[J].中国科学:地球科学, 1998, 28(2):153-156. http://www.cqvip.com/QK/98491X/19982/3019674.html [20] 刘应汉, 汪明启, 赵恒川, 等.寻找隐伏矿的"地气"测量方法原理及应用前景[J].青海国土经略, 2006(3):41-42. http://d.wanfangdata.com.cn/Periodical/qhgtjl200603015 [21] 王学求, 张必敏, 迟清华.穿透性地球化学迁移模型的实验证据[J].矿物学报, 2009, 29(增刊1):485-486. http://www.cqvip.com/QK/95783X/2009S1/1003877116.html [22] 刘晓辉, 童纯菡.地下玻璃固化体中元素垂直迁移规律初探[J].原子核物理评论, 2009, 26(1):64-68. http://www.cnki.com.cn/Article/CJFDTotal-HWDT200901014.htm [23] 周四春, 刘晓辉, 胡波.坑道地气测量试验及其意义[J].矿物学报, 2015, 35(增刊1):1063-1064. http://www.cqvip.com/qk/95783x/2015s1/75878866504849538349555549.html [24] Ye Rong, Zhang Bimin, Wang Yong.Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit[J].Geochemistry:Exploration, Environment, Analysis, 2015, 15(1):62-71. doi: 10.1144/geochem2013-228 [25] 王学求, 张必敏, 姚文生, 等.覆盖区勘查地球化学理论研究进展与案例[J].地球科学:中国地质大学学报, 2012, 37(6):1126-1132. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201206006.htm [26] 周四春, 刘晓辉, 朱捌, 等.地气测量勘查花岗岩隐伏铀矿研究[J].矿物学报, 2011, 31(增刊1):330-331. http://www.cqvip.com/QK/95783X/2011S1/1003573338.html [27] 王学求, 谢学锦, 卢荫庥.地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J].物探与化探, 1995, 19(3):161-171. http://www.cqvip.com/Main/Detail.aspx?id=1915880 [28] 童纯菡, 李巨初.地气测量寻找深部隐伏金矿及其机理研究[J].地球物理学报, 1999, 42(1):135-142. http://d.wanfangdata.com.cn/Periodical/dqwlxb199901016 [29] 徐景银, 曾明中, 付家灿.地气及金属活动态深穿透化探新方法的应用效果[J].湖北地矿, 2003, 17(2):19-23. http://www.cnki.com.cn/Article/CJFDTotal-HBDK200302005.htm [30] Wang Xueqiu, Zhang Bimin, Ye Rong.Nanoparticles observed by TEM from gold, copper-nickel and silver deposits and implication for mineral exploration in covered terrains[J].Journal of Nanoscience and Nanotechnology, 2017(9):6014-6025. [31] 付小方, 侯立伟, 梁斌, 等.甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型[M].北京:科学出版社, 2017. [32] 王学求.地球气纳微金属测量的概念、理论与方法[C]//谢学锦, 邵跃, 王学求, 等.走向21世纪矿产勘查地球化学.北京: 地质出版社, 1999: 105-124. [33] Kristiansson K, Malmqvist L.Trace elements in geogas and their relation to bedrock composition[J].Geoexploration, 1987, 24:517-534.