留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奉节县曾家棚滑坡时空差异性变形特征与成因机制分析

张怡悦 殷坤龙 陈丽霞 刘书豪 梁鑫 檀梦皎

张怡悦, 殷坤龙, 陈丽霞, 刘书豪, 梁鑫, 檀梦皎. 奉节县曾家棚滑坡时空差异性变形特征与成因机制分析[J]. 地质科技通报, 2020, 39(2): 148-157. doi: 10.19509/j.cnki.dzkq.2020.0216
引用本文: 张怡悦, 殷坤龙, 陈丽霞, 刘书豪, 梁鑫, 檀梦皎. 奉节县曾家棚滑坡时空差异性变形特征与成因机制分析[J]. 地质科技通报, 2020, 39(2): 148-157. doi: 10.19509/j.cnki.dzkq.2020.0216
Zhang Yiyue, Yin Kunlong, Chen Lixia, Liu Shuhao, Liang Xin, Tan Mengjiao. Characteristics and mechanism of spatio-temporal difference deformation of Zengjiapeng landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 148-157. doi: 10.19509/j.cnki.dzkq.2020.0216
Citation: Zhang Yiyue, Yin Kunlong, Chen Lixia, Liu Shuhao, Liang Xin, Tan Mengjiao. Characteristics and mechanism of spatio-temporal difference deformation of Zengjiapeng landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 148-157. doi: 10.19509/j.cnki.dzkq.2020.0216

奉节县曾家棚滑坡时空差异性变形特征与成因机制分析

doi: 10.19509/j.cnki.dzkq.2020.0216
基金项目: 

国家重点研发计划项目 2018YFC0809400

国家自然科学基金项目 41877525

详细信息
    作者简介:

    张怡悦(1995—),女,现正攻读地质工程专业硕士学位,主要从事滑坡预测预报和风险分析研究工作。E-mail:zyycug@163.com

    通讯作者:

    殷坤龙(1963—),男,教授,博士生导师,主要从事地质灾害预测预报与风险管理方面的教学和科研工作。E-mail:yinkl@126.com

  • 中图分类号: P642.22

Characteristics and mechanism of spatio-temporal difference deformation of Zengjiapeng landslide

  • 摘要: 研究库水位波动和降雨影响下滑坡的位移变形特征并分析其破坏机制,对了解三峡库区滑坡的演化过程具有重要意义。以奉节曾家棚滑坡为例,基于GPS地表监测位移分析了滑坡在不同特征库水位运行阶段的变化规律,结合灰色关联度模型确定了滑坡不同部位的变形在不同阶段的主要控制因素,借助GEO-Studio软件模拟了曾家棚滑坡在历史降雨和库水位波动耦合作用下的稳定性变化,并与定量分析结果进行了交叉检验。结果表明:曾家棚滑坡的运动状态随时间变化,从缓慢蠕变状态进入阶跃变形状态。平面上,中东部坡体与西部坡体相比,运动更加强烈;剖面上,前缘变形早且变形量大。曾家棚滑坡变形失稳过程为初期蓄水启动了曾家棚古滑坡,前缘首先发生变形;降雨作为中后期主控因素,和库水位波动联合作用共同诱发了滑坡多次阶跃变形,使滑坡前中后部形成贯通裂缝;最终由二十年一遇的暴雨诱发滑坡发生整体破坏。

     

  • 图 1  曾家棚滑坡全貌图

    Figure 1.  The panorama of Zengjiapeng landslide

    图 2  曾家棚滑坡典型工程地质剖面B-B′剖面图

    Figure 2.  Geological profile along section B-B′ of Zengjiapeng landslide

    图 3  曾家棚滑坡变形特征

    Figure 3.  Surface evidence of deformations of the sliding mass of Zengjiapeng landslide

    图 4  曾家棚滑坡监测布置图

    Figure 4.  Map of monitoring points in Zengjiapeng landslide

    图 5  GPS监测数据与库水位、降雨历史数据关系图

    Figure 5.  The correlation curves of GPS displacement monitoring data with rainfall and reservoir water level

    图 6  基于灰色关联度模型的滑坡变形与影响因子的关联度分析流程

    Figure 6.  Correlation analysis process of landslide deformation and main control factors based on the grey corelation model

    图 7  灰色关联度计算结果及滑坡地质模型

    Figure 7.  Grey correlation calculation results and the geological model of Zengjiapeng landslide

    图 8  滑坡数值模拟稳定性系数变化图

    Figure 8.  The variation diagram of landslide stability in numerical simulation

    图 9  位移速率与库水位、降雨量关系图

    Figure 9.  The correlation curves of displacement rate with reservoir water level and rainfall intensity

    表  1  滑坡岩土体参数

    Table  1.   Mechanical parameters for calculation of the landslide

    岩土体物理力学性质 重度ρ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°)
    天然 饱和 天然 饱和 天然 饱和
    滑体 20.5 21 47.2 35.1 19.5 15.0
    滑带 20.0 21 27.2 20.5 12.2 9.5
    基岩 27.0 / 41.9 / 8.7 /
    下载: 导出CSV

    表  2  曾家棚滑坡不同部位在不同阶段的主控因素

    Table  2.   Main controlling factors of different parts of the landslide body at different stages

    控制因素 滑坡部位
    前缘 中部 后缘
    早期主控因素(2005年3月-2006年8月) 稳定 稳定 稳定
    中期主控因素(2006年8月-2008年8月) 降雨+库水位 降雨+库水位 降雨
    后期主控因素(2008年8月-2012年5月) 降雨 降雨 降雨
    下载: 导出CSV
  • [1] 明成涛, 肖诗荣, 宋桂林, 等.三峡库区曾家棚滑坡变形破坏影响因素分析[J].人民长江, 2013, 44(24):30-34. doi: 10.3969/j.issn.1001-4179.2013.24.009
    [2] 中村浩之, 王恭先.论水库滑坡[J].水土保持通报, 1990, 10(1):53-64.
    [3] Tan F, Hu X, He C, et al.Identifying themain control factors for different deformation stages of landslide[J].Geotechnical and Geological Engineering, 2018, 36(1): 469-482.
    [4] Wu Q, Tang H, Ma X, et al.Identification of movement characteristics and causal factors of the Shuping landslide based on monitored displacements[J].Bulletin of Engineering Geology and the Environment, 2019, 78(3):2093-2106.
    [5] 汪洋, 殷坤龙, 安关峰.滑坡敏感因子的灰色关联分析[J].岩土力学, 2004, 25(1):91-93. doi: 10.3969/j.issn.1000-7598.2004.01.019
    [6] Zangerl C, Eberhardt E, Perzlmalier S.Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir[J].Engineering Geology, 2010, 112(1/4):53-67.
    [7] 高连通, 易夏伟, 李喜, 等.三峡库区典型滑坡变形与高水位涨落关系研究[J].地质科技情报, 2011, 30(4):132-136. doi: 10.3969/j.issn.1000-7849.2011.04.021
    [8] Gu D M, Huang D, Yang W D, et al.Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir[J].Landslides, 2017, 14(6):2073-2087.
    [9] Wu Y, Miao F, Li L, et al.Time-varying reliability analysis of Huangtupo Riverside No.2 Landslide in the Three Gorges Reservoir based on water-soil coupling[J].Engineering Geology.2017, 226:267-276.
    [10] 张俞, 殷坤龙, 郭子正, 等.库水位变动联合降雨作用下麻柳滑坡稳定性评价[J].地质科技情报, 2019, 38(6):198-205. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201906024.htm
    [11] 郭子正, 殷坤龙, 唐扬, 等.库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J].地质科技情报, 2017, 36(4):265-270, 275.
    [12] Jian W, Xu Q, Yang H, et al.Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China[J].Environmental Earth Sciences.2014, 72(8):2999-3013. http://cn.bing.com/academic/profile?id=1ff0389bfa8594f4b6e99bc912fdde31&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Jiao Y Y, Zhang H Q, Tang H M, et al.Simulating the process of reservoir: Impoundment-induced landslide using the extended DDA method[J].Engineering Geology, 2014, 182:37-48. http://cn.bing.com/academic/profile?id=d7bacc83737f94e7e6d15d4866dae9cf&encoded=0&v=paper_preview&mkt=zh-cn
    [14] 殷跃平, 胡瑞林.三峡库区巴东组(T2 b)紫红色泥岩工程地质特征研究[J].工程地质学报, 2004, 12(2):124-135. doi: 10.3969/j.issn.1004-9665.2004.02.003
    [15] 滕伟福, 杨冬英, 吴益平.巴东库段红层地层(T2b2)中的滑坡机理与防治对策研究[Z].武汉: 中国地质大学(武汉), 2005.
    [16] 吴益平, 余宏明, 胡艳新.巴东新城区紫红色泥岩工程地质性质研究[J].岩土力学, 2006, 27(7):1201-1203. doi: 10.3969/j.issn.1000-7598.2006.07.037
    [17] 缪海波.三峡库区侏罗系红层滑坡变形破坏机理与预测预报研究[D].武汉: 中国地质大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10491-1012460888.htm
    [18] Sun B, Jiang J, Zheng F, et al.Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis[J].Journal of Power Sources, 2015, 282:146-157. http://cn.bing.com/academic/profile?id=585a8748d2ff9c39454b38f16fe5518f&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Xie L, Yan E, Ren X, et al.Sensitivityanalysis of bending and toppling deformation for anti-slope based on the grey relation method[J].Geotechnical and Geological Engineering, 2015, 33(1):35-41. doi: 10.1007/s10706-014-9817-9
    [20] You M, Shu C, Chen W, et al.Analysis of cardinal grey relational grade and grey entropy on achievement of air pollution reduction by evaluating air quality trend in Japan[J].Journal of Cleaner Production, 2017, 142:3883-3889. http://cn.bing.com/academic/profile?id=c4d0aa7df8d70acbe896ee491b0c4802&encoded=0&v=paper_preview&mkt=zh-cn
    [21] 殷坤龙.三峡库区万州区近水平地层滑坡成因机制与防治工程研究[M].武汉:中国地质大学出版社, 2007.
    [22] 刘礼领, 殷坤龙.暴雨型滑坡降水入渗机理分析[J].岩土力学, 2008, 29(4):1061-1066. doi: 10.3969/j.issn.1000-7598.2008.04.039
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  899
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07

目录

    /

    返回文章
    返回