Model test on the displacement field characteristics of the landslide stabilizing piles
-
摘要: 滑坡-抗滑桩体系演化机理是滑坡灾害防治的重要理论基础,其中桩土相互作用是滑坡-抗滑桩体系中的关键,而位移场是相互作用的重要表征之一,因此,对滑坡-抗滑桩体系位移场的研究具有十分重要的工程意义。以物理模型试验为手段,基于三峡库区堆积层滑坡工程地质特征,建立大型物理试验模型,通过逐级施加荷载来模拟滑坡后缘推力,采用高速摄像机及粒子图像测速技术等获取滑坡坡表与桩顶位移数据,定量分析了体系位移场变化特征。试验结果显示:在滑坡-抗滑桩体系演化过程中,坡表位移场变化呈现出很好的规律性,这为桩土相互作用研究机理起到了一定的推动作用。Abstract: The evolution mechanism of landslide anti-slide pile system is an important theoretical basis for landslide hazard prevention. Pile-soil interaction is the key of landslide anti-slide pile system, and displacement field is one of the important symbols of interaction. Therefore, the study of displacement field of landslide anti-slide pile system is of great significance in the field of engineering. Based on the engineering geological characteristics of accumulation landslide in Three Gorges Reservoir area, a large-scale physical test model is established. The thrust of the rear edge of the landslide is simulated by applying load step by step. The displacement data of the landslide slope surface and the top of the piles are obtained by using high-speed video camera and particle image velocity technology, and the variation characteristics of the displacement field of the system are quantitatively analyzed. The test results show that the displacement field presents a good regularity in the evolution process, which plays a certain role in promoting the research on the mechanism of pile-soil interaction.
-
表 1 模型材料的相关参数
Table 1. Relevant parameters of model materials
项目 容重/(kN·m-3) 黏聚力/kPa 摩擦角/(°) 滑体 22.1 5.6 23.8 滑带 17.1 3.9 18.1 -
[1] DiMaio C, Fornaro G, Gioia D, et al.In situ and satellite long-term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works[J].Engineering Geology, 2018, 245:218-235. doi: 10.1016/j.enggeo.2018.08.017 [2] Hu X L, Tan F L, Tang H M, et al.In-situ monitoring platform and preliminary analysis of monitoring data of Majiagou landslide with stabilizing piles[J].Engineering Geology, 2017, 228:323-336. doi: 10.1016/j.enggeo.2017.09.001 [3] Zhang Y M, Hu X L, Tannant D D.et al.Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area[J].Landslide, 2018, 15(3):581-592. doi: 10.1007/s10346-018-0945-9 [4] 亓星, 许强, 朱星, 等.甘肃黑方台陈家8#静态液化型黄土滑坡变形特征及成因机理[J].地质科技情报, 2018, 37(5):234-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805032 [5] 李群, 曾超, 刘文强, 等.基于密集多点变形监测的公路滑坡主滑方向动态判别[J].地质科技情报, 2019, 38 (4):231-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201904024 [6] 刘勇, 秦志萌, 刘曼, 等.基于状态划分的滑坡位移预测方法研究[J].地质科技情报, 2018, 37(1):184-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201801025 [7] 张俞, 殷坤龙, 郭子正, 等.库水位变动联合降雨作用下麻柳林滑坡稳定性评价[J].地质科技情报, 2019, 38(6):198-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906023 [8] 汤罗圣, 殷坤龙, 周丽, 等.基于数值模拟与位移监测的滑坡抗剪强度参数反演分析研究[J].水文地质工程地质, 2012, 39(4):32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201204006 [9] 徐福卫, 陈海玉.数字网格摄影测量法及其在滑坡模型试验中的应用[J].地球科学与环境学报, 2009, 31(2):216-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200902017 [10] 周昌, 胡新丽, 徐楚, 等.三峡库区滑坡消涨带变形破坏模型试验研究[J].中国公路学报, 2018, 31(2):252-260. http://www.cnki.com.cn/Article/CJFDTotal-ZGGL201802028.htm [11] Hu Xinli, He Chuncan, Zhou Chang, et al.Model test and numerical analysis on the deformation and stability of a landslide subjected to reservoir filling[J].Geofluids, 2019, 2019:1-15. http://www.researchgate.net/publication/334490099_Model_Test_and_Numerical_Analysis_on_the_Deformation_and_Stability_of_a_Landslide_Subjected_to_Reservoir_Filling [12] Luo X, Sun H, Tham L, et al.Landslide model test system and its application on the study of Shiliushubao landslide in Three Gorges Reservoir area[J].Soils and Foundations, 2010, 50(2):309-317. doi: 10.3208/sandf.50.309 [13] Iverson R.Scaling and design of landslide and debris-flow experiments[J].Geomorphology, 2015, 244: 9-20. doi: 10.1016/j.geomorph.2015.02.033 [14] Tang H, Hu X, Xu C, et al.A novel approach for determining landslide pushing force based on landslide-pile interactions[J].Engineering Geology, 2014, 182:15-24. doi: 10.1016/j.enggeo.2014.07.024 [15] Zhu H, Shi B, Yan J, et al.Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network[J].Engineering Geology, 2014, 186:34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aabcc8de4f97e8677c305064408627e5 [16] Zhang G, Wang L.Integrated analysis of a coupled mechanism for the failure processes of pile-reinforced slopes[J].Acta Geotechnical, 2016, 11(4):941-952. doi: 10.1007/s11440-015-0410-z [17] 雍睿.三峡库区侏罗系地层推移式滑坡-抗滑桩相互作用研究[D].武汉: 中国地质大学(武汉), 2014. [18] 马俊伟.渐进式滑坡多场信息演化特征与数据挖掘研究[D].武汉: 中国地质大学(武汉), 2016. [19] 金林.滑坡不同演化阶段抗滑桩加固效果研究[D].武汉: 中国地质大学(武汉), 2017. [20] Hu X, Zhou C, Xu C, et al.Model tests of the response of landslide stabilizing piles to piles with different stiffness[J].Landslides, 2019, 16(11):2187-2200. doi: 10.1007/s10346-019-01233-4 [21] He Chuncan, Hu Xinli, Tannant D, et al.Response of a landslide to reservoir impoundment in model tests[J].Engineering Geology, 2018, 247:84-93. doi: 10.1016/j.enggeo.2018.10.021 [22] 王文静, 程秀芝, 张申.模型试验位移测量技术的研究[J].能源技术与管理, 2005(3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsygl200503029 [23] 马俊伟, 唐辉明, 胡新丽, 等.抗滑桩加固斜坡坡面位移场特征及演化模型试验研究[J].岩石力学与工程学报, 2014, 33(4):679-690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201404004 [24] 白义如, 白世伟, 冯传玉.模型位移场的散斑互相关法测量技术研究及应用[J].岩土力学, 2004, 25(6):995-998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200406035 [25] 任伟中, 寇新建, 凌浩美.数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报, 2004, 23 (3):436-440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200403014 [26] 罗先启, 陈海玉, 沈辉, 等.自动网格法在大型滑坡模型试验位移测试中的应用[J].岩土力学, 2005, 26(2):231-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200502012 [27] 李俊青.PIV的原理与应用[J].水利科技与经济, 2015, 21 (3):40-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slkjyjj201503015 [28] 刘琼蔚, 罗振敏.基于PIV对瓦斯爆炸流场的综述及展望[J].技术与创新管理, 2019, 40(2):284-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjrcsc201902023 [29] Vaagsaether K, Gaathaug A V, Bjerketvedt D.PIV-measurements of reactant flow in hydrogen-air explosions[J].International Journal of Hydrogen Energy, 2019, 44(17):8799-8806. doi: 10.1016/j.ijhydene.2018.10.025 [30] 张敏霞, 崔文杰, 徐平, 等.竖向荷载作用下挤扩支盘桩桩周土体位移场变化规律研究[J].岩石力学与工程学报, 2017, 36(增刊1):3569-3577. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2017S1051.htm [31] 李世海, 刘天苹, 刘晓宇.论滑坡稳定性分析方法[J].岩石力学与工程学报, 2009, 28(增刊2):3309-3324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2009z2004 [32] 陈陆望.物理模型实验技术研究及其在岩土工程中的应用[D].武汉: 中国科学院研究生院, 2006. [33] 徐楚, 胡新丽, 何春灿, 等.水库型滑坡模型试验相似材料的研制及应用[J].岩土力学, 2018, 39(11):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201811046 [34] 夏浩, 雍睿, 马俊伟.推移式滑坡模型试验推力加载方法的研究[J].长江科学院院报, 2015, 32(1):112-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201501023 [35] 徐玉明, 迟卫, 莫立新.PIV测试技术及其应用[J].舰船科学技术, 2007, 29(3):101-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jckxjs200703027