Organic geochemistry of the Late Permian coal from the Songhe Mine, Guizhou
-
摘要: 以贵州松河煤矿晚二叠世煤层为研究对象,进行了详细的有机地球化学研究。利用偏光显微镜观察煤岩组分和测定镜质体反射率,利用气相色谱(GC)和色谱-质谱联用(GC-MS)分别对煤样中饱和烃和芳香烃进行测定,并计算相关的有机地球化学参数。结果显示,松河煤样镜质组含量最高,镜质体平均反射率(Ro)为1.21%。正烷烃碳数分布范围为C12-C29,主峰碳为C14或C15,∑C21-/∑C22+值较高,奇偶优势指数OEP值接近于1,姥植比(Pr/Ph)在1.40~2.65之间;检测到的芳烃种类较多,以来源于树脂类有机质的萘系和菲系化合物为主,甲基取代同系物中热力学稳定异构体的含量相对较高。分析表明,松河煤的成煤母质主要为陆相高等植物,但也伴随海相低等生物的贡献;煤样成熟度较高,较高的芴系化合物和苯并萘并噻吩含量反映煤层主要形成于还原环境之中。Abstract: The Late Permian coal samples selected from Songhe Mine, Guizhou Province, were investigated by organic geochemical methods. Optical microscopy was used to observe coal components and determine vitrinite reflectance. Saturated hydrocarbons and aromatic hydrocarbons in coals were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), and the related organic geochemical parameters were calculated. The results show that the content of vitrinite in Songhe coal samples is the highest, with the average vitrinite reflectance (Ro) 1.21%. The carbon number of n-alkanes ranges from C12 to C29, and the main peak carbon is C14 or C15. The value of ∑C21-/∑C22+ is higher, and the value of odd-even predominance (OEP) is close to 1, and the pristane/phytane (Pr/Ph) ratio is from 1.40 to 2.65. There are many kinds of aromatic hydrocarbons detected. The contents of naphthalene and phenanthrene compounds derived from resins are predominant, and the isomers of aromatic hydrocarbons with higher thermodynamic stability has an advantage position. The data analyses indicate that the coal-forming parent material is mainly from terrestrial higher plants, accompanied by the contribution of marine phytoplankton. The coal sample has higher maturity. The relative higher contents of fluorenes and benzonaphthothiophenes indicate that coal seams were mainly formed in reducing environment.
-
Key words:
- Songhe /
- Late Permian /
- coal /
- saturated hydrocarbons /
- aromatic hydrocarbons /
- organic geochemistry
-
表 1 松河煤显微组分质量分数
Table 1. Maceral composition of the Songhe coal
煤样 Ro/% 镜质组 结构镜质体 均质镜质体 基质镜质体 胶质镜质体 碎屑镜质体 惰质组 丝质体 粗粒体 微粒体 菌类体 碎屑惰质体 矿物 黄铁矿 黏土矿物 方解石 石英 wB/% SH1152-1 1.17 64.30 0.23 24.94 36.61 0 2.52 28.83 7.78 1.60 2.06 0.46 16.93 6.86 3.43 1.14 1.83 0.46 SH1152-3 1.17 52.73 1.09 20.22 26.23 1.09 4.10 38.80 9.84 1.37 1.91 0 25.68 8.47 0 4.37 2.73 1.37 SH1232-1 1.26 58.84 0.48 26.15 30.75 0 1.45 36.32 11.62 1.69 0.48 0.24 22.28 4.84 0 1.94 2.42 0.48 SH1334-1 1.24 67.39 0.86 28.08 29.37 0 9.07 21.17 0.65 1.51 1.51 0 17.49 11.46 2.38 2.16 4.54 2.38 平均值 1.21 60.81 0.67 24.85 30.74 0.27 4.28 31.28 7.47 1.54 1.49 0.17 20.60 7.91 1.45 2.40 2.88 1.17 表 2 松河煤样可溶有机质质量分数
Table 2. Contents of organic extract in coals from Songhe Mine
样品编号 有机质/ (mg·g-1) 族组分/(mg·g-1) 总烃/ (mg·g-1) 饱/芳 饱和烃 芳香烃 极性物 SH1152-1 10.62 0.98 4.45 5.19 5.43 0.22 SH1152-3 5.46 0.90 2.51 2.05 3.41 0.36 SH1232-1 12.32 2.14 4.99 5.19 7.13 0.43 SH1232-3 9.05 1.25 3.82 3.97 5.08 0.33 SH1334-1 8.87 1.39 4.36 3.12 5.75 0.32 SH1334-3 10.55 2.07 5.87 2.61 7.94 0.35 平均值 9.48 1.46 4.33 3.69 5.79 0.33 表 3 松河煤中饱和烃色谱参数
Table 3. Parameters of saturated hydrocarbons in Songhe coals
样品编号 碳数范围 主峰碳数 OEP ∑C21-/∑C22+ Pr/Ph Pr/nC17 Ph/nC18 SH1152-1 C12-C27 C14 1.06 7.10 1.40 0.50 0.43 SH1152-3 C12-C29 C15 1.02 7.80 2.16 0.39 0.24 SH1232-1 C12-C30 C15 1.07 4.97 2.65 0.72 0.32 SH1232-3 C12-C30 C15 1.06 4.73 2.42 0.61 0.30 SH1334-1 C13-C29 C14 1.10 6.63 2.63 0.58 0.28 SH1334-3 C11-C29 C13 0.99 9.21 2.38 0.60 0.31 平均值 - - 1.05 6.74 2.27 0.57 0.31 注:$OEP = {\left[ {\frac{{{{\rm{C}}_{i - 2}} + 6{{\rm{C}}_i} + {{\rm{C}}_{i + 2}}}}{{4{{\rm{C}}_{i - 1}} + 4{{\rm{C}}_{i + 1}}}}} \right]^{\left( { - 1} \right)i + 1}}$,其中Ci为主峰碳;数据根据色谱图积分结果计算 表 4 松河煤中可识别的芳香烃化合物
Table 4. Identificable aromatic hydrocarbons in coals from Songhe Mine
SH1152-1 SH1152-3 SH1232-1 SH1232-3 SH1334-1 SH1334-3 平均值 wB/% 萘系列 25.08 27.56 22.96 21.45 45.36 45.26 31.28 N 0.26 0.41 0.24 0.21 2.68 2.21 1.00 MN 1.67 2.00 1.33 1.91 14.94 13.77 5.94 DMN 10.54 9.98 10.17 8.94 18.03 18.67 12.72 TMN 10.59 12.68 9.59 8.97 7.44 8.30 9.60 乙基萘 0.84 0.95 0.75 0.63 1.20 1.17 0.92 氧芴系列 5.96 7.07 7.09 6.87 4.37 4.66 6.00 DBF 0.36 0.49 0.29 0.28 0.27 0.31 0.33 MDBF 2.53 3.18 3.12 3.07 2.09 2.24 2.71 芴系列 9.78 10.75 9.26 8.75 6.13 6.89 8.59 Fluorene 0.31 0.43 0.24 0.20 0.26 0.22 0.28 MFLU 4.76 5.45 4.49 4.31 2.98 3.56 4.26 C2-FLU 3.66 3.88 3.52 3.53 2.24 2.47 3.22 硫芴系列 6.02 6.31 6.62 6.74 4.22 4.34 5.71 DBT 1.10 1.26 1.72 1.70 1.03 1.12 1.32 MDBT 2.79 2.92 2.83 2.80 1.73 1.79 2.48 DMDBT 1.38 1.39 1.33 1.40 0.97 0.98 1.24 菲系列 27.84 25.25 25.54 27.12 16.03 17.98 23.29 P 2.58 2.21 1.91 2.00 2.06 2.46 2.20 MP 10.14 9.69 8.70 8.72 4.82 6.80 8.15 DMP 9.36 8.49 8.72 9.28 5.30 5.52 7.78 TMP 3.97 3.37 3.85 4.21 2.33 1.96 3.28 联苯系列 6.78 8.01 7.25 6.81 9.64 10.25 8.12 Bi 0.32 0.45 0.23 0.13 2.01 1.87 0.84 MBi 1.54 1.44 2.43 2.28 4.11 4.32 2.69 DMBi 4.92 6.11 4.60 4.41 3.52 4.06 4.60 苯并萘并噻吩系列 6.08 4.35 6.31 7.17 5.50 3.88 5.55 BNT 1.40 0.70 1.53 1.37 0.66 0.38 1.01 MBNT 3.52 2.48 3.58 3.29 2.62 2.29 2.96 DMBNT 1.16 1.16 1.20 2.51 2.22 1.21 1.58 苯并萘并呋喃系列 2.76 2.37 2.76 2.78 1.66 1.32 2.28 芘系列 3.73 3.53 5.68 4.40 2.47 1.67 3.58 荧蒽系列 0.55 0.45 0.55 0.62 0.34 0.29 0.47 系列 2.25 1.81 2.65 3.52 2.06 1.67 2.33 苝系列 0.49 0.38 0.68 0.82 0.52 0.41 0.55 蒽系列 2.68 2.17 2.65 2.95 1.71 1.37 2.26 表 5 松河煤中可识别的芳香烃化合物
Table 5. Identification of aromatics compounds in coals from Songhe Mine
芳香烃化合物 SH1152-1 SH1152-3 SH1232-1 SH1232-3 SH1334-1 SH1334-3 平均值 wB/% 1 萘 0.26 0.41 0.24 0.21 2.68 2.21 1.00 2 2-甲基萘 0.52 0.51 0.44 1.29 10.46 9.44 3.77 3 1-甲基萘 1.15 1.49 0.90 0.62 4.48 4.34 2.16 4 联苯 0.32 0.45 0.23 0.13 2.01 1.87 0.83 5 2-乙基萘 0.84 1.00 0.75 0.63 1.20 1.17 0.93 6 2, 6+2, 7-二甲基萘 2.99 2.82 1.82 1.86 5.74 5.88 3.52 7 1, 3+1, 7-二甲基萘 2.75 2.57 3.37 2.93 5.45 5.49 3.76 8 1, 6-二甲基萘 1.78 1.51 2.51 2.26 4.02 4.44 2.75 9 1, 4+2, 3-二甲基萘 0.40 0.54 0.41 0.34 0.41 0.41 0.42 10 1, 5-二甲基萘 2.04 1.88 1.06 1.00 1.78 1.84 1.60 11 1, 2-二甲基萘 0.57 0.65 1.00 0.55 0.64 0.62 0.67 12 4-甲基联苯 0.78 0.67 1.47 1.43 2.69 2.84 1.65 13 3-甲基联苯 0.76 0.78 0.96 0.85 1.42 1.48 1.04 14 C3-萘 1.18 1.49 0.88 0.81 1.06 1.13 1.09 15 氧芴 0.36 0.49 0.29 0.28 0.27 0.31 0.33 16 1, 3, 7-三甲基萘 0.54 0.65 0.46 0.39 0.48 0.46 0.50 17 1, 3, 6-三甲基萘 0.45 0.59 0.44 0.39 0.34 0.35 0.43 18 1, 3, 5+1, 4, 6-三甲基萘 1.85 2.34 1.49 1.41 1.27 1.45 1.64 19 2, 3, 6-三甲基萘 2.23 2.63 1.72 1.60 1.47 1.72 1.89 20 1, 2, 7-三甲基萘 1.23 1.33 1.46 1.34 0.93 1.07 1.23 21 1, 6, 7-三甲基萘 2.21 2.54 1.78 1.67 1.53 1.69 1.90 22 1, 2, 6-三甲基萘 2.08 2.60 2.23 2.16 1.43 1.57 2.01 23 芴 0.31 0.43 0.24 0.20 0.26 0.22 0.28 24 3, 5+3, 3′-甲基联苯 1.14 1.35 0.89 0.89 0.93 1.04 1.04 25 3, 4′-二甲基联苯 2.01 2.53 2.05 1.97 1.33 1.57 1.91 26 4, 4′-二甲基联苯 1.76 2.23 1.66 1.55 1.26 1.45 1.65 27 4-甲基氧芴 0.68 0.89 0.98 0.99 0.53 0.60 0.78 28 2-甲基氧芴 0.70 0.79 0.76 0.68 0.57 0.61 0.69 29 3-甲基氧芴 0.61 0.84 0.82 0.85 0.55 0.57 0.70 30 1-甲基氧芴 0.54 0.67 0.56 0.56 0.44 0.46 0.54 31 3-甲基芴 0.59 0.71 0.64 0.59 0.36 0.36 0.54 32 2-甲基芴 1.69 1.96 1.54 1.49 1.06 1.25 1.50 33 1-甲基芴 2.49 2.78 2.30 2.23 1.56 1.94 2.22 34 C2-氧芴 0.80 0.94 0.95 0.91 0.52 0.57 0.78 35 C2-氧芴 0.82 0.78 1.08 1.05 0.57 0.60 0.82 36 硫芴 1.10 1.26 1.72 1.70 1.03 1.12 1.32 37 C2-氧芴 0.41 0.46 0.41 0.37 0.24 0.27 0.36 38 C2-氧芴 0.35 0.38 0.45 0.45 0.25 0.25 0.36 39 C2-氧芴 0.41 0.49 0.46 0.44 0.25 0.27 0.39 40 C2-氧芴 0.28 0.37 0.33 0.30 0.18 0.16 0.27 41 菲 2.58 2.21 1.91 2.00 2.06 2.46 2.20 42 C2-芴 0.63 0.72 0.65 0.59 0.40 0.37 0.56 43 C2-芴 0.97 1.05 0.86 0.82 0.56 0.62 0.81 44 C2-芴 1.32 1.35 1.26 1.34 0.82 0.93 1.17 45 C2-芴 0.75 0.76 0.76 0.77 0.46 0.54 0.67 46 4-甲基二苯并噻吩 0.83 0.86 0.82 0.82 0.55 0.56 0.74 47 2-甲基二苯并噻吩 0.71 0.72 0.75 0.73 0.42 0.46 0.63 48 3-甲基二苯并噻吩 0.65 0.67 0.69 0.67 0.37 0.40 0.58 49 1-甲基二苯并噻吩 0.60 0.67 0.57 0.57 0.40 0.37 0.53 50 3-甲基菲 2.21 2.26 1.98 2.08 1.26 1.33 1.85 51 2-甲基菲 3.27 3.05 2.79 2.46 2.03 2.33 2.66 52 9-甲基菲 2.43 2.25 2.17 2.37 0.23 1.69 1.86 53 1-甲基菲 2.23 2.12 1.76 1.80 1.29 1.46 1.78 54 C3-芴 0.61 0.55 0.59 0.30 0.34 0.34 0.45 55 C3-芴 0.43 0.44 0.43 0.41 0.31 0.31 0.39 56 C2-硫芴 1.38 1.39 1.33 1.40 0.97 0.98 1.24 57 3, 6-二甲基菲 0.89 0.86 0.86 0.89 0.53 0.48 0.75 58 2, 6+3, 5-二甲基菲 0.84 0.77 0.73 0.79 0.47 0.47 0.68 59 2, 7-二甲基菲 1.33 1.25 1.23 1.27 0.78 0.87 1.12 60 2, 10+3, 10+1, 3+1, 9-二甲基菲 3.84 3.39 3.50 3.76 2.09 2.21 3.13 61 2, 9+1, 6-二甲基菲 1.03 0.91 0.92 0.98 0.55 0.59 0.83 62 1, 7-二甲基菲 0.70 0.63 0.67 0.71 0.41 0.43 0.59 63 2, 3-二甲基菲 0.74 0.66 0.82 0.90 0.48 0.45 0.67 64 C3-硫芴 0.75 0.74 0.74 0.83 0.49 0.45 0.67 65 苯并萘并呋喃[2, 1-d] 1.22 1.13 1.18 1.27 0.80 0.59 1.03 66 苯并萘并呋喃[1, 2-d] 0.47 0.44 0.50 0.55 0.31 0.25 0.42 67 芘 0.70 0.64 0.69 0.80 0.44 0.36 0.60 68 苯并萘并呋喃[2, 3-d] 0.39 0.33 0.34 0.36 0.22 0.23 0.31 69 苯并萘并呋喃[3, 2-d] 0.69 0.47 0.74 0.61 0.34 0.25 0.51 70 1, 3, 6-三甲基菲 0.65 0.54 0.60 0.64 0.36 0.29 0.51 71 2, 7, 9-三甲基菲 0.94 0.80 0.91 0.99 0.53 0.47 0.78 72 2, 6, 9-三甲基菲 0.32 0.27 0.31 0.37 0.19 0.13 0.26 73 2, 3, 6-三甲基菲 0.82 0.71 0.81 0.87 0.50 0.42 0.69 74 1, 6, 9-三甲基菲 0.55 0.44 0.52 0.62 0.30 0.25 0.45 75 1, 7, 9-三甲基菲 0.69 0.61 0.71 0.73 0.44 0.39 0.59 76 C3-菲 0.90 0.78 0.83 0.92 0.54 0.50 0.75 77 C1-苯并蒽 1.28 1.05 1.34 1.44 0.87 0.91 1.15 78 C1-苯并蒽 0.79 0.62 0.70 0.80 0.46 0.20 0.59 79 甲基荧蒽 0.55 0.45 0.55 0.62 0.34 0.29 0.46 80 2-甲基芘 0.35 0.32 0.38 0.48 0.26 0.16 0.32 81 4-甲基芘 0.49 0.37 0.51 0.57 0.29 0.23 0.41 82 1-甲基芘 0.36 0.46 0.38 0.44 0.22 0.14 0.33 83 C2-苯并蒽 0.61 0.49 0.62 0.70 0.38 0.26 0.51 84 C2-芘 0.73 0.87 1.65 1.67 0.56 0.54 1.00 85 C2-芘 0.55 0.81 1.27 0.44 0.70 0.23 0.67 86 苯并萘并噻吩 1.02 0.28 1.10 0.87 0.29 0.16 0.62 87 苯并萘并噻吩 0.37 0.42 0.43 0.49 0.38 0.23 0.39 88 䓛 1.46 1.07 1.47 2.04 1.20 0.95 1.36 89 C1-苯并萘并噻吩 0.93 0.61 0.99 1.17 0.69 0.72 0.85 90 C1-苯并萘并噻吩 1.02 0.72 1.14 0.19 0.67 0.66 0.73 91 C1-苯并萘并噻吩 0.68 0.52 0.65 0.72 0.57 0.35 0.58 92 C1-苯并萘并噻吩 0.89 0.63 0.80 1.21 0.70 0.56 0.80 93 3-甲基䓛 0.57 0.38 0.58 0.68 0.43 0.34 0.49 94 2-甲基䓛 0.23 0.36 0.60 0.80 0.43 0.39 0.47 95 C2-苯并萘并噻吩 0.28 0.36 0.58 0.84 0.52 0.37 0.49 96 C2-苯并萘并噻吩 0.50 0.33 0.27 0.46 0.22 0.36 0.36 97 C2-苯并萘并噻吩 0.38 0.47 0.36 1.22 1.49 0.47 0.73 98 5, 8-二甲基苯并菲 0.48 0.35 0.84 1.11 0.48 0.37 0.60 99 C2-苯并菲 0.40 0.37 0.69 0.88 0.51 0.37 0.54 100 苝 0.49 0.38 0.68 0.82 0.52 0.41 0.55 101 苯并芘 0.55 0.07 0.80 nd nd nd 0.48 注:nd.未检测到 -
[1] 邵龙义, 高彩霞, 张超, 等.西南地区晚二叠世层序-古地理及聚煤特征[J].沉积学报, 2013, 31(5):856-866. http://d.wanfangdata.com.cn/Periodical/cjxb201305011 [2] 陆青锋, 吴士豪, 秦身钧, 等.贵州盘县矿区煤中伴生元素的地球化学特征[J].煤炭科学技术, 2017, 45(10):169-175. http://www.cnki.com.cn/Article/CJFDTotal-MTKJ201710029.htm [3] 秦身钧, 高康, 王金喜, 等.黔西南盘县火烧铺和金佳矿区晚二叠世煤中伴生元素的地球化学特征[J].煤炭学报, 2016, 41(6):1507-1516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201606025 [4] Qin S J, Lu Q F, Gao K, et al.Geochemistry of elements associated with Late Permian coal in the Zhongliangshan Mine, Chongqing, Southwest China[J].Energy Exploration and Exploitation, 2018, 36(6):1655-1673. doi: 10.1177/0144598718768980 [5] Dai S F, Ren D Y, Tang Y G, et al.Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China[J].International Journal of Coal Geology, 2005, 61(1):119-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7804f3c7bed08e2b58eb74e3664b1d [6] 秦身钧, 陆青锋, 吴士豪, 等.重庆中梁山晚二叠世煤有机地球化学特征[J].煤炭学报, 2018, 43(7):1973-1982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201807021 [7] Sun Y Z, Qin S J, Zhao C L, et al.Organic geochemistry of semianthracite from the Gequan Mine, Xingtai Coalfield, China[J].International Journal of Coal Geology, 2013, 116:281-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8fd6d3c9b6cc6c78642a7abb0d8897b6 [8] Qin S J, Gao K, Wang J X, et al.Organic geochemistry of the Late Permian coals from the Huoshaopu and Jinjia Mines, Liupanshui Coalfield, China[J].Energy Exploration and Exploitation, 2016, 34(6):881-898. doi: 10.1177/0144598716665019 [9] 柯友亮, 王华, 甘华军, 等.准噶尔盆地南缘芦草沟组上段油页岩有机地球化学特征及其沉积意义[J].地质科技情报, 2019, 38(3):199-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903021 [10] Achim B, Ali I K, Yilmaz B, et al.Coal characteristics and biomarker investigations of Dombayova coals of Late Miocene-Pliocene age (Afyonkarahisar-Turkey)[J].Organic Geochemistry, 2016, 96(4):52-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6dd35388978482c627926c86f4125859 [11] Gan H J, Wang H, Chen J, et al.Geochemical characteristics of Jurassic coal and its paleoenvironmental implication in the eastern Junggar Basin, China[J].Journal of Geochemical Exploration, 2018, 188:73-86. doi: 10.1016/j.gexplo.2018.01.010 [12] 杜姣姣, 赵云鹏, 田由甲, 等.白音华褐煤可溶有机质的组成和结构特征[J].燃料化学学报, 2017(1):9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201701002 [13] Liu B J, Zhao C L, Ma J L, et al.The origin of pale and dark layers in Pliocene lignite deposits from Yunnan Province, Southwest China, based on coal petrological and organic geochemical analyses[J].International Journal of Coal Geology, 2018, 195:172-188. doi: 10.1016/j.coal.2018.06.003 [14] 易同生, 周效志, 金军.黔西松河井田龙潭煤系煤层气-致密气成藏特征及共探共采技术[J].煤炭学报, 2016, 41(1):212-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201601029 [15] 金军, 高为, 孙键, 等.黔西松河矿区煤中元素地球化学特征及成煤环境意义[J].煤炭科学技术, 2017, 45(12):166-173. http://www.cnki.com.cn/Article/CJFDTotal-MTKJ201712029.htm [16] 吴丛丛, 杨兆彪, 秦勇, 等.贵州松河及织金煤层气产出水的地球化学对比及其地质意义[J].煤炭学报, 2018, 43(4):1058-1064. http://www.cqvip.com/QK/96550X/20184/675344952.html [17] Peters K E, Moldowan J M.The biomarker guide:Interpreting molecular fossils in petroleum and ancient sediments[M].Prentice Hall:Englewood Cliffs, N J, 1993:26-38. [18] Strobl S A I, Sachsenhofer R F, Bechtel A, et al.Paleoenvironment of the Eocene coal seam in the Fushun Basin (NE China):Implications from petrography and organic geochemistry[J].International Journal of Coal Geology, 2014, 134/135:24-37. doi: 10.1016/j.coal.2014.10.001 [19] Wang H, Shao L, Hao L, et al.Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China[J].International Journal of Coal Geology, 2011, 85(1):168-183. doi: 10.1016/j.coal.2010.11.003 [20] 甘军, 杨希冰, 胡林, 等.乌石凹陷烃源岩生烃特征及差异成藏模式[J].地质科技情报, 2019, 38(3):174-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903018 [21] Alok K S, Alok K.Organic geochemical characteristics of Nagaur lignites, Rajasthan, India, and their implication on thermal maturity and paleoenvironment[J].Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2018, 40(15):1842-1851 doi: 10.1080/15567036.2018.1487480 [22] 韩小锋, 牛海青, 卜建军, 等.甘蒙地区北山盆地群中口子盆地侏罗系烃源岩特征及评价[J].地质科技情报, 2019, 38(5):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201905004 [23] 窦廷焕, 高菊芬.Pr/Ph值与煤化程度的关系及成煤环境意义[J].煤田地质与勘探, 1996, 24(1):19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600762063 [24] 赵海舟.腐泥煤和腐植煤生物标志物色谱对比[J].中国煤炭地质, 2002, 14(2):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz200202006 [25] Alexander R, Cumbers K M, Kagi R I.Alkylbiphenyls in ancient sediments and petroleums[J].Organic Geochemistry, 1986, 10(4):841-845. http://www.sciencedirect.com/science/article/pii/S0146638086800213 [26] 蔡杰, 张敏.四川盆地上三叠统须家河组煤系气源岩芳烃地球化学特征[J].石油实验地质, 2013, 35(3):325-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201303019 [27] 周佩瑜.石油烃中烷基萘的形成机理及其地球化学意义[J].地质科技情报, 2008, 27(5):92-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200805016 [28] Willsch H, Radke M.Distribution of polycyclic aromatic compounds in coals of high rank[J].Polycyclic Aromatic Compounds, 1995, 7(4):231-251. doi: 10.1080/10406639508009627 [29] 顾永达, 相宏伟, 肖贤明, 等.伊敏煤田伍牧场矿区煤中多环芳烃分布特征[J].燃料化学学报, 1996(4):335-340. http://www.cnki.com.cn/Article/CJFDTotal-RLHX604.009.htm [30] Li Y, Zhu Y M, Hao F, et al.Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin[J].Science China:Earth Sciences, 2015, 58(11):1960-1969. doi: 10.1007/s11430-015-5084-8 [31] 王崇敬, 张鹤, 李世宇, 等.基于分子标志物的有机质成熟度评价参数选择及其适用范围分析[J].地质科技情报, 2018, 37(4):202-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201804027 [32] 卢冰, 唐运千, 姚龙奎, 等.褐煤蜡树脂中多环芳烃组成的研究[J].燃料化学学报, 1999(2):75-80. http://www.cnki.com.cn/Article/CJFDTotal-RLHX902.014.htm