Late Triassic post-collision extension at Elashan magmatic belt, East Kunlun Orogenic Belt: Insights from Suolagou highly fractionated I-type granite
-
摘要: 鄂拉山岩浆带位于东昆仑造山带最东端,为研究该地区晚三叠世的构造背景,选取索拉沟地区钾长花岗岩开展研究。LA-ICP-MS锆石U-Pb定年结果显示,索拉沟钾长花岗岩加权平均年龄为(233±1)Ma,形成于晚三叠世早期。该岩石有很高的w(SiO2)(75.91%~77.23%)、富K2O和Na2O,贫CaO、MgO、TiO2和P2O5,A/CNK介于1.01~1.05,属高钾钙碱性系列,锆石饱和温度733~768℃,具有强烈的Eu负异常(Eu/Eu*=0.09~0.25),明显富集大离子亲石元素(LILE Rb、Th、U、K等)和轻稀土元素(LREE),亏损Ba、Sr及Nb、P、Zr、Ti等高场强元素(HFSE),显示高分异I型花岗岩的特征。锆石Hf同位素初始值(176Hf/177Hf)范围为0.282 487~0.282 611,εHf(t)介于-3.54~-0.56;对应的两阶段模式年龄T2DM(Hf)为1.16~1.33 Ga。索拉沟钾长花岗岩是新生下地壳部分熔融后经过分离结晶作用形成,新生下地壳是幔源岩浆在特提斯洋俯冲阶段(242~238 Ma)底侵古老地壳形成。结合晚古生代至中生代东昆仑地区的构造演化特征,认为索拉沟钾长花岗岩形成于张性构造背景,与古特提斯洋俯冲结束后巴颜喀拉地体与东昆仑地体后碰撞造山伸展作用有关。Abstract: Studying the Elashan magmatic belt located easternmost of the East Kunlun Orogenic Belt (EKOB), we present zircon U-Pb age and Lu-Hf isotopes and whole-rock chemistry of syenogranite, from Suolagou area, in order to discuss its rock type and tectonic setting. The zircon weighted mean ages of the syenogranite is (223±1) Ma, indicating it was formed in the Late Triassic. The syenogranite is characterized by high silic, enrichment of alkaline, but depletion in calcium, magnesium, titanium and phosphorus. The A/CNK values range from 1.01 to 1.05, showing a peralkaline affinity, with strong negative Eu anomalies (Eu/Eu*=0.09-0.25). Zircon saturation temperatures are 733 to 768℃ and the syenogranite. The rock is obviously enriched in large ion lithophile elements (LILE Rb, Th, U, K, etc.) and light rare earth elements (LREE), and depleted in Ba, Sr and Nb, P, Zr, Ti and other high field strength elements (HFSE), showing characteristics of highly fractionated I-type granites. The initial zircon Hf isotope value (176Hf/177Hf)i ranges from 0.282 487 to 0.282 611, εHf(t) ranges from -3.54 to -0.56, and two-stage mode age T2DM(Hf) is 1.16 to 1.33 Ga. The rock is formed by crystallization after partial melting of the juvenile lower crust, and the juvenile lower crust is formed by the mantle-derived magma underlying the ancient crust during the northward subduction stage of the Paleo-Tethys Ocean(242-238 Ma). Combining with the Late Paleozoic to Mesozoic tectonic evolution of the East Kunlun area, we suggest that the syenogranite is formed in the extensional tectonic setting, related to the post-collision extension of the Bayan Kala terrane and the East Kunlun (close of Paleo-Tethys ocean).
-
图 1 中央造山系略图(a),东昆仑造山带(b)及鄂拉山岩浆带中段(c)地质简图和研究区采样位置简图(d)
a据文献[3]修改; b据文献[10, 23]修改; c, d据文献[24]修改;a中QXM为祁漫塔格-香日德蛇绿混杂岩带;AKM为阿其克库勒湖-昆中蛇绿混杂岩带;BAM为布青山-阿尼玛卿蛇绿混杂岩岩带;c中什多龙岩体年龄据文献[25],其余岩体年龄据文献[5]
Figure 1. Geological sketch of the Central Orogenic Belt(a), geological map of East Kunlun Orogenic Belt(b), geological map of Elashan magmatic belt(c) and geological map of the study area(d)
图 3 鄂拉山岩浆带索拉沟钾长花岗岩中(SLG-4)锆石阴极发光(CL)图像
实心圆圈和黄色虚线圆圈分别代表U-Pb年龄、Hf同位素测试激光剥蚀点位;圈中数字为分析点号,编号同表 1,锆石下方年龄为206Pb/238U表面年龄,黄色数字代表εHf(t)
Figure 3. Cathodoluminescence (CL) for zircons of syenogranite (sample No.SLG-4) Suolagou area, Elashan magmatic belt
图 6 索拉沟钾长花岗岩岩稀土元素配分图(a)和微量元素蛛网图(b)
球粒陨石和原始地幔数据来自文献[45], 壳幔混源钾长花岗岩为南戈滩钾长花岗岩(239 Ma)据文献[35], 下地壳来源钾长花岗岩为香日德-巴隆钾长花岗岩(239~231 Ma)据文献[34],鄂拉山、东昆仑东段高分异I型钾长花岗岩数据来源同图 5
Figure 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the syenogranite from Suolagou area, Elashan magmatic belt
图 10 鄂拉山索拉沟岩浆带钾长花岗岩元素协变关系图
a底图据文献[60];b, c图中矿区分离结晶趋势线据文献[44];图例及数据来源同图 6;PlAn15.斜长石(An=15); PlAn50.斜长石(An=50);Kfs.钾长石; Bt.黑云母; Ms.白云母; Grt.石榴石; Amp.角闪石; Mgt.磁铁矿; Tit.榍石; Allan.褐帘石; Ap.磷灰石; Sph.榍石; Mon.独居石
Figure 10. Plots of Ba-Sr (a), TiO2-Zr (b) and (La/Yb)N-La (c) for Suolagou syenogranite, Elashan magmatic belt
表 1 鄂拉山岩浆带索拉沟钾长花岗岩锆石LA-ICP-MS U-Pb同位素测试结果
Table 1. LA-ICP-MS zircon U-Pb dating results of syenogranite (sample no.SLG-4) from Suolagou area, Elashan magmatic belt
分析点号 232Th 238U Th/ U 同位素比值 年龄t/Ma wB/10-6 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 308 540 0.57 0.050 6 0.001 7 0.253 0 0.008 3 0.036 2 0.000 3 233 76 229 7 229 2 2 830 781 1.06 0.059 7 0.003 3 0.306 3 0.016 0 0.037 4 0.000 6 591 120 271 12 237 3 3 542 934 0.58 0.051 1 0.001 3 0.260 4 0.006 7 0.037 0 0.000 3 243 59 235 5 234 2 4 633 1 037 0.61 0.051 9 0.001 3 0.265 7 0.007 0 0.037 0 0.000 3 280 53 239 6 234 2 5 475 842 0.56 0.051 4 0.002 0 0.262 7 0.010 7 0.037 0 0.000 5 257 91 237 9 234 3 6 234 401 0.58 0.052 1 0.004 0 0.258 6 0.017 5 0.036 6 0.000 8 300 176 234 14 232 5 7 162 275 0.59 0.051 6 0.002 6 0.258 1 0.012 8 0.036 8 0.000 4 265 123 233 10 233 3 8 381 874 0.44 0.050 2 0.002 4 0.253 2 0.011 4 0.036 6 0.000 4 206 111 229 9 231 3 9 1 121 1 700 0.66 0.063 9 0.001 7 0.324 1 0.008 7 0.036 8 0.000 5 739 57 285 7 233 3 10 430 616 0.70 0.052 0 0.003 0 0.259 8 0.015 1 0.036 2 0.000 4 287 133 235 12 229 3 11 670 1 720 0.39 0.052 3 0.001 3 0.267 3 0.008 0 0.036 8 0.000 6 298 64 241 6 233 4 12 312 545 0.57 0.052 3 0.003 6 0.264 9 0.017 9 0.036 6 0.000 6 298 162 239 14 232 4 13 418 877 0.48 0.051 0 0.001 6 0.264 8 0.008 2 0.037 4 0.000 4 239 72 239 7 237 2 14 260 326 0.80 0.051 4 0.002 3 0.257 8 0.011 5 0.036 5 0.000 4 257 108 233 9 231 3 15 260 606 0.43 0.052 8 0.001 8 0.270 8 0.009 3 0.037 0 0.000 4 320 80 243 7 234 2 16 791 1 999 0.40 0.065 1 0.001 5 0.334 5 0.008 7 0.036 8 0.000 4 776 53 293 7 233 2 17 575 808 0.71 0.052 5 0.002 1 0.267 6 0.009 6 0.037 4 0.000 6 306 91 241 8 237 4 表 2 鄂拉山岩浆带索拉沟钾长花岗岩主量元素、稀土及微量元素分析结果
Table 2. Major and trace element compositions of the syenogranite from Suolagou area, Elashan magmatic belt
样品编号 SLG-1 SLG-2 SLG-3 SLG-4 SLG-5 SLG-6 SLG-7 SLG-8 SiO2 wB/% 76.63 76.61 77.05 76.68 77.23 75.94 75.93 75.91 TiO2 0.06 0.05 0.05 0.05 0.03 0.08 0.08 0.06 Al2O3 12.26 12.54 12.49 12.60 12.25 12.64 12.84 12.54 FeOT 0.72 0.85 0.93 0.87 0.84 1.26 1.18 0.94 MnO 0.04 0.02 0.03 0.03 0.04 0.05 0.04 0.04 MgO 0.07 0.05 0.07 0.07 0.06 0.15 0.15 0.07 CaO 0.72 0.65 0.50 0.67 0.57 0.77 0.62 0.75 Na2O 3.22 3.48 3.52 3.43 3.48 3.69 3.78 3.35 K2O 4.87 4.78 4.84 4.89 4.62 4.59 4.55 4.84 P2O5 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.01 0.01 烧失量 0.70 0.48 0.40 0.61 0.59 0.60 0.43 0.67 总量 99.29 99.52 99.88 99.90 99.71 99.78 99.61 99.18 Mg# 16 10 13 14 12 19 20 13 A/CNK 1.03 1.04 1.04 1.04 1.04 1.01 1.05 1.03 DI 95 95 95 95 95 94 94 94 SI 0.79 0.55 0.76 0.76 0.67 1.57 1.57 0.77 TZr/℃ 744 736 741 734 733 764 768 750 Sc wB/10-6 1.0 0.7 1.4 1.3 1.3 1.6 1.6 1.1 V 2.0 3.0 1.0 2.0 1.0 6.0 4.0 2.0 Cr 4.0 5.0 4.0 4.0 4.0 6.0 5.0 6.0 Co 125.0 105.5 115.5 107.0 138.0 170.5 138.5 152.0 Ni 61.7 54.2 59.2 55.8 69.5 85.0 74.0 82.6 Mn 197 92 167 140 224 295 257 260 Cu 10.0 1.1 3.1 2.3 4.7 4.1 6.7 20.8 Zn 28.0 8.0 16.0 17.0 19.0 26.0 44.0 27.0 Ga 15.4 18.1 17.4 17.1 16.8 19.7 20.4 16.1 Cs 5.4 3.9 6.9 4.4 7.3 7.0 8.6 6.7 Rb 263 268 346 284 342 260 265 299 Ba 99 54 61 86 49 97 92 93 Th 45.2 39.5 42.0 35.9 39.0 29.1 30.0 48.4 U 6.2 6.4 7.4 6.6 6.7 4.4 3.8 7.0 Nb 12.8 21.0 24.7 18.6 14.0 17.8 20.6 14.4 Ta 3.1 3.8 5.7 3.9 3.6 3.4 3.7 3.7 La 27.4 19.2 21.1 18.6 15.9 21.8 21.8 24.7 Ce 55.6 45.8 46.4 40.7 33.5 51.2 53.0 50.8 Pb 40.2 19.6 34.3 29.3 35.8 26.4 34.4 39.4 Pr 5.80 5.22 5.00 4.42 3.72 5.99 6.31 5.54 Sr 37.1 26.8 20.5 30.3 20.8 41.9 38.1 37.4 Nd 19.6 19.9 18.6 15.6 12.9 21.7 22.7 17.5 Zr 91 82 87 81 78 121 122 99 Hf 3.50 4.00 4.40 4.00 3.70 4.90 5.40 3.80 Sm 3.53 4.76 4.96 3.70 3.01 4.78 5.41 3.31 Eu 0.26 0.14 0.15 0.16 0.16 0.17 0.17 0.23 Ti 390 350 320 350 270 580 550 420 Gd 2.67 4.01 4.61 3.36 3.02 4.58 4.98 2.86 Tb 0.40 0.63 0.78 0.56 0.50 0.72 0.78 0.45 Dy 2.45 3.83 4.93 3.51 3.23 4.22 4.67 2.80 Y 15.60 22.80 30.40 22.00 19.90 24.00 26.70 17.30 Ho 0.47 0.78 1.09 0.67 0.64 0.85 0.94 0.58 Er 1.47 2.44 3.26 2.06 1.98 2.44 2.75 1.71 Tm 0.26 0.38 0.53 0.35 0.34 0.39 0.44 0.28 Yb 1.84 2.62 3.73 2.42 2.42 2.46 2.84 2.13 Lu 0.28 0.39 0.56 0.40 0.39 0.40 0.45 0.34 ΣREE 122.03 110.10 115.70 96.51 81.71 121.70 127.24 113.23 δEu 10.68 5.26 4.06 5.51 4.71 6.36 5.51 8.32 Nb/Ta 5.01 2.60 2.75 3.25 3.41 2.94 2.60 4.82 Zr/Y 1.20 1.27 1.02 1.15 1.03 1.54 1.45 1.11 Sm/Nd 0.25 0.10 0.09 0.14 0.16 0.11 0.10 0.22 Th/U 1.0 0.7 1.4 1.3 1.3 1.6 1.6 1.1 (La/Yb)N 2.0 3.0 1.0 2.0 1.0 6.0 4.0 2.0 注:所有样品全岩主微量元素测试于2019年2月在澳实分析检测(广州)有限公司完成;DI为分异指数;SI为固结指数;TZr为据Watson等[46]计算的锆石饱和温度;N代表球粒陨石标准化,球粒陨石数据据文献[45] 表 3 鄂拉山岩浆带索拉沟钾长花岗岩(SLG-4)锆石Hf同位素分析结果
Table 3. Hf isotopic data for zircon of Suolagou syenogranite(SLG-4), Elashan magmatic belt
分析点号 176Yb/ 177Hf 1σ 176Lu/ 177Hf 1σ 176Hf/ 177Hf 1σ 176Hf/ 177Hfi εHf(0) εHf(t) T1DM/ Ga T2DM/ Ga fLu/Hf 1 0.018 195 0.000 138 0.000 661 0.000 004 0.282 551 0.000 021 0.282 548 -7.83 -2.81 0.98 1.29 -0.98 2 0.047 809 0.000 746 0.001 637 0.000 018 0.282 573 0.000 020 0.282 566 -7.04 -2.18 0.98 1.25 -0.95 3 0.022 507 0.000 212 0.000 834 0.000 010 0.282 566 0.000 016 0.282 563 -7.28 -2.29 0.97 1.26 -0.97 4 0.028 659 0.000 300 0.001 072 0.000 006 0.282 583 0.000 025 0.282 579 -6.67 -1.72 0.95 1.23 -0.97 5 0.019 430 0.000 400 0.000 723 0.000 017 0.282 576 0.000 019 0.282 573 -6.92 -1.92 0.95 1.24 -0.98 6 0.036 135 0.000 210 0.001 376 0.000 005 0.282 609 0.000 023 0.282 603 -5.77 -0.86 0.92 1.18 -0.96 7 0.030 739 0.000 358 0.001 135 0.000 010 0.282 569 0.000 019 0.282 564 -7.17 -2.23 0.97 1.26 -0.97 8 0.018 329 0.000 515 0.000 688 0.000 016 0.282 556 0.000 027 0.282 553 -7.64 -2.63 0.98 1.28 -0.98 9 0.076 490 0.003 715 0.002 431 0.000 110 0.282 622 0.000 023 0.282 611 -5.31 -0.56 0.93 1.16 -0.93 10 0.031 886 0.000 217 0.001 161 0.000 010 0.282 560 0.000 017 0.282 555 -7.50 -2.56 0.98 1.28 -0.97 11 0.039 268 0.001 174 0.001 458 0.000 053 0.282 538 0.000 027 0.282 532 -8.27 -3.38 1.02 1.32 -0.96 13 0.027 157 0.000 281 0.001 066 0.000 016 0.282 562 0.000 030 0.282 558 -7.41 -2.46 0.98 1.27 -0.97 15 0.021 114 0.000 409 0.000 792 0.000 012 0.282 531 0.000 022 0.282 527 -8.53 -3.54 1.01 1.33 -0.98 16 0.040 041 0.000 585 0.001 445 0.000 027 0.282 563 0.000 022 0.282 557 -7.38 -2.48 0.99 1.27 -0.96 17 0.042 616 0.001 016 0.001 573 0.000 033 0.282 586 0.000 022 0.282 579 -6.59 -1.72 0.96 1.23 -0.95 注:15个分析点,分析点号保留U-Pb定点的分析点号,校正计算年龄T=233 Ma;(176Lu/177Hf)CHUR=0.033 2, (176Hf/177Hf)CHUR, 0=0.282 772[50], (176Lu/177Hf)DM=0.038 4[51], (176Hf/177Hf)DM=0.283 25[52], (176Lu/177Hf)CC=0.015, fcc=-0.548, fDM=0.16[51], λ=1.867×10-11yr-1[53] -
[1] 张森琦, 王瑾, 王秉璋, 等.昆秦结合部鄂拉山陆内斜冲断裂-岩浆造山带造山机制研究[C]//佚名."九五"全国地质科技重要成果学术交流会论文集.北京: 中国地质学会, 2000: 80-85. [2] 孙延贵, 田琪, 王青海.西秦岭与东昆仑的侧向碰撞与造山[J].青海地质, 2001, 10(2):18-25. http://www.cnki.com.cn/Article/CJFDTotal-GTJL200102002.htm [3] 孙延贵.西秦岭-东昆仑造山带的衔接转换与共和坳拉谷[D].西安: 西北大学, 2004. [4] 张雪亭, 杨生德, 杨站君.青海省板块构造研究:1:100万青海省大地构造图说明书[M].北京:地质出版社, 2007:1-220. [5] Ren H, Wang T, Zhang L, et al.Ages, sources and tectonic settings of the Triassic igneous rocks in the easternmost segment of the East Kunlun Orogen, Central China[J].Acta Geologica Sinica, 2016, 90(2):641-668. doi: 10.1111/1755-6724.12696 [6] Shao F, Niu Y, Liu Y, et al.Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J].Lithos, 2017, 282/283:33-44. doi: 10.1016/j.lithos.2017.03.002 [7] 张宏飞, 陈岳龙, 徐旺春, 等.青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J].岩石学报, 2006, 22(12):2910-2922. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612009 [8] 潘桂棠, 陈智樑, 李兴振, 等.东特提斯多弧-盆系统演化模式[J].岩相古地理, 1996, 16(2):52-65. http://www.cnki.com.cn/Article/CJFDTotal-YXGD602.004.htm [9] 江新胜, 潘桂棠, 颜仰基, 等.秦、祁、昆交接区三叠纪沉积相格架及构造古地理演化[J].四川地质学报, 1996, 16(3):204-208. http://www.cnki.com.cn/Article/CJFDTotal-SCDB603.002.htm [10] Dong Y, He D, Sun S, et al.Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J].Earth-Science Reviews, 2018, 186:231-261. doi: 10.1016/j.earscirev.2017.12.006 [11] 夏锐.东昆仑古特提斯造山过程与金成矿作用[D].北京: 中国地质大学(北京), 2017. [12] 熊富浩.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义[D].武汉: 中国地质大学(武汉), 2014. [13] 陈国超.东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义[D].西安: 长安大学, 2014. [14] 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703010 [15] 罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 [16] 孔会磊, 李金超, 栗亚芝, 等.青海东昆仑东段按纳格闪长岩地球化学及锆石U-Pb年代学研究[J].地质科技情报, 2014, 33(6):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201406002 [17] 孟繁聪, 贾丽辉, 任玉峰, 等.东昆仑东段温泉地区片麻岩记录的岩浆和变质事件:锆石U-Pb年代学证据[J].岩石学报, 2017, 33(12):3691-3709. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201712001.htm [18] 孟繁聪, 崔美慧, 吴祥珂, 等.东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J].岩石学报, 2013, 29(6):2107-2122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306018 [19] Xiong F, Ma C, Jiang H A, et al.Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China:Juvenile lower crustal melting during post-collisional extension[J].Journal of Earth Science, 2016, 27(3):474-490. doi: 10.1007/s12583-016-0674-6 [20] Li B, Zhi Y, Zhang L, et al.U-Pb dating, geochemistry, and Sr-Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu-(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J].Ore Geology Reviews, 2015, 67:1-10. doi: 10.1016/j.oregeorev.2014.11.008 [21] 杨宝荣, 张新铭, 李文君, 等.青海沟里地区水系沉积物地球化学异常特征及找矿预测[J].地质科技情报, 2019, 38(4):181-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201904019 [22] 罗凡, 薛春纪, 赵晓波, 等.青海铜峪沟铜矿区含黄铜矿硅质岩及其地质找矿意义[J].现代地质, 2016, 30(4):723-738. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201604001 [23] Xia R, Wang C M, Qing M, et al.Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J].Ore Geology Reviews, 2015, 66:114-131. doi: 10.1016/j.oregeorev.2014.10.024 [24] 青海省地质调查院.1: 25万兴海幅(I47C001003)区域地质调查[R].西宁: 青海省地质调查院, 2011. [25] Wang Y, Guo Y, Zeng Q, et al.Petrogenesis and tectonic setting of the Shiduolong skarn Pb-Zn deposit in the East Kunlun Orogenic Belt:Constraints from whole-rock geochemical, zircon U-Pb and Hf isotope analyses[J].Geological Journal, 2018, 53(3):1022-1038. doi: 10.1002/gj.2941 [26] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology, 2010, 51(1/2):537-571. http://petrology.oxfordjournals.org/content/51/1-2/537 [27] Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4 [28] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c [29] Hu Z C, Liu Y S, Gao S, et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h [30] Ludwig K R.ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003. [31] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002 [32] Castro A.Tonalite-granodiorite suites as cotectic systems:A review of experimental studies with applications to granitoid petrogenesis[J].Earth-Science Reviews, 2013, 124:68-95. doi: 10.1016/j.earscirev.2013.05.006 [33] Griffin W L, Belousova E A, Shee S R, et al.Archean crustal evolution in the northern Yilgam Craton:U-Pb and Hf-isotope evidence from detrital zircons[J].Precambrian Research, 2004, 131(3/4):231-282. http://www.sciencedirect.com/science/article/pii/S0301926804000178 [34] Xiong F, Ma C, Zhang J, et al.Reworking of old continental lithosphere:An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J].Journal of the Geological Society, 2014, 171(6):847-863. doi: 10.1144/jgs2013-038 [35] Xia R, Deng J, Qing M, et al.Petrogenesis of ca.240 Ma intermediate and felsic intrusions in the Nan'getan:Implications for crust-mantle interaction and geodynamic process of the East Kunlun Orogen[J].Ore Geology Reviews, 2017, 90:1099-1117. doi: 10.1016/j.oregeorev.2017.04.002 [36] 何成, 王力圆, 田立明, 等.东昆仑哈拉森地区花岗岩类岩石成因及地质意义[J].地球科学, 2018, 43(4):1207-1221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120181102655730 [37] Middlemost E A K.Naming materials in the magma igneous rock system[J].Earth-Science Reviews, 1994, 37(3/4):215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299 [38] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [39] Chappel B W, White A J R.Two contrasting granite types[J].Pacific Geology, 1974, 8:173-174. doi: 10.1046/j.1440-0952.2001.00882.x [40] Frost B R, Barnes C G, Collins W J, et al.A geochemical classification for granitic rocks[J].Journal of Petrology, 2001, 42(11):2033-2043. doi: 10.1093/petrology/42.11.2033 [41] Peccerillo A, Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745 [42] 孟德磊, 贾小辉, 谢国刚, 等.粤南长蛇山分异I型花岗岩的年代学、地球化学特征及其构造意义[J].地质科技情报, 2019, 38(4):193-204. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904020.htm [43] Zhu D C, Mo X X, Wang L Q, et al.Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet:Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J].Science in China:Earth Sciences, 2009, 52(9):1223-1239. doi: 10.1007/s11430-009-0132-x [44] 邱检生, 肖娥, 胡建, 等.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, 24(11):2468-2484. http://d.wanfangdata.com.cn/Periodical/ysxb98200811002 [45] Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [46] Watson E B, Harrison T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X [47] 熊富浩, 马昌前, 张金阳, 等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J].岩石学报, 2011, 27(11):3350-3364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201111016 [48] 赵旭, 付乐兵, 魏俊浩, 等.东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J].地球科学, 2018, 43(2):354-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201802002 [49] Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370:1-18. doi: 10.1016/j.chemgeo.2014.01.010 [50] Blichert-Toft J, Chauvel C, Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology, 1997, 127(3):248-260. doi: 10.1007/s004100050278 [51] Griffin W L, Pearson N J, Belousova E, et al.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta, 2000, 64(1):133-148. doi: 10.1016/S0016-7037(99)00343-9 [52] Nowell G M, Kempton P D, Noble S R, et al.High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry:Insights into the depleted mantle[J].Chemical Geology, 1998, 149(3):211-233. http://www.onacademic.com/detail/journal_1000035458859410_7e5b.html [53] Söderlund U, Patchett P J, Vervoort J D, et al.The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J].Earth and Planetary Science Letters, 2004, 219(3):311-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0792ad455eb65fadd619aef64d4bef9 [54] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956 [55] 吴福元, 刘小驰, 纪伟强, 等.高分异花岗岩的识别与研究[J].中国科学:地球科学, 2017, 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 [56] Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202 [57] Sylvester P J.Post-collisional alkaline granites[J].The Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302 [58] 王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002 [59] 刘昌实, 陈小明, 陈培荣, 等.A型岩套的分类、判别标志和成因[J].高校地质学报, 2003, 9(4):573-591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [60] Janousek V, Finger F, Roberts M, et al.Deciphering the petrogenesis of deeply buried granites:Whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J].Transactions of the Royal society of Edinburgh-Earth Sciences, 2004, 95(1/2):141-159. https://research-repository.uwa.edu.au/en/publications/deciphering-the-petrogenesis-of-deeply-buried-granites-whole-rock [61] Li W X, Li X H, Li Z X, et al.U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?[J].Lithos, 2007, 96(1):186-204. https://www.sciencedirect.com/science/article/pii/S002449370600291X [62] Soesoo A.Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis:An example from Lachlan Fold Belt, Australia[J].Journal of the Geological Society, 2000, 157(1):135-149. doi: 10.1144/jgs.157.1.135 [63] Xia R, Wang C, Qing M, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234/235:47-60. doi: 10.1016/j.lithos.2015.07.018 [64] Wu F Y, Jahn B M, Wilde S A, et al.Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J].Lithos, 2003, 66:241-273. doi: 10.1016/S0024-4937(02)00222-0 [65] Wu F Y, Jahn B M, Wilde S A, et al.Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos, 2003, 67(3/4):191-204. https://www.sciencedirect.com/science/article/pii/S002449370300015X [66] Rudnick R L.Making continental crust[J].Nature, 1995, 378:571-577. doi: 10.1038/378571a0 [67] Liu B, Ma C, Guo P, et al.Evaluation of late Permian mafic magmatism in the central Tibetan Plateau as a response to plume-subduction interaction[J].Lithos, 2016, 264:1-16. doi: 10.1016/j.lithos.2016.08.011 [68] Xiong F H, Ma C Q, Jiang H A, et al.Petrogenetic and tectonic significance of Permian calc-alkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau[J].International Geology Review, 2013, 55(14):1817-1834. doi: 10.1080/00206814.2013.804683 [69] Hu Y, Niu Y, Li J, et al.Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau[J].Lithos, 2016, 245:205-222. doi: 10.1016/j.lithos.2015.05.004 [70] Bucholz C E, Jagoutz O, Schmidt M W, et al.Fractional crystallization of high-K arc magmas:Biotite- versus amphibole-dominated fractionation series in the Dariv igneous complex, western Mongolia[J].Contributions to Mineralogy and Petrology, 2014, 168(5):1-28. doi: 10.1007%2Fs00410-014-1072-9 [71] Rudnick R L, Gao S.Composition of the continental crust[J].Treatise on Geochemistry, 2003, 33:1-64. https://ui.adsabs.harvard.edu/abs/2003TrGeo...3....1R/abstract [72] 王国灿, 王青海, 简平, 等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘, 2004, 11(4):481-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404014 [73] 陈有炘, 裴先治, 李瑞保, 等.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J].现代地质, 2011, 25(3):510-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201103013 [74] Niu Y, Batiza R.Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J].Earth and Planetary Science Letters, 1997, 148(3/4):471-483. https://www.sciencedirect.com/science/article/pii/S0012821X97000484 [75] 陈能松, 王新宇, 张宏飞, 等.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示[J].地球科学:中国地质大学学报, 2007, 32(1):7-21. http://d.wanfangdata.com.cn/Periodical/dqkx200701002 [76] 孟繁聪, 张建新, 杨经绥.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件:花岗岩和片麻岩的同位素与岩石地球化学证据[J].岩石学报, 2005, 21(1):47-58. http://d.wanfangdata.com.cn/Periodical/ysxb98200501005 [77] Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224. doi: 10.1007/s00710-011-0187-1 [78] Liu B, Ma C, Zhang J, et al.40Ar-39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China:Petrogenesis and tectonic implications[J].International Geology Review, 2013, 56(1):57-73. doi: 10.1080/00206814.2013.818804 [79] 姚学钢, 周帅, 贾群子, 等.东昆仑胜利铁铜矿区二长花岗岩锆石U-Pb定年、岩石地球化学特征及找矿意义[J].地质科技情报, 2018, 37(5):11-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805002 [80] 祁生胜.青海省东昆仑造山带火成岩岩石构造组合与构造演化[D].北京: 中国地质大学(北京), 2015. [81] 罗明非, 莫宣学, 喻学惠, 等.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J].岩石学报, 2014, 30(11):3229-3241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201411010 [82] 孔会磊, 李金超, 栗亚芝, 等.青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA-MC-ICP-MS锆石U-Pb测年及其地质意义[J].地质科技情报, 2016, 35(1):8-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201601002 [83] 陈国超, 裴先治, 李瑞保, 等.东昆仑古特提斯后碰撞阶段伸展作用:来自晚三叠世岩浆岩的证据[J].地学前缘, 2019, 26(4):191-208. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201904026.htm [84] Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48(1/4):43-55. https://www.sciencedirect.com/science/article/pii/0009254185900348 [85] Harris N B W, Pearce J A, Tindle A G.Geochemical characteristics of collision-zone magmatism[J].Geological Society, London, Special Publications, 1986, 19(1):67-81. doi: 10.1144/GSL.SP.1986.019.01.04 [86] 邵凤丽.东昆仑造山带三叠纪花岗岩类和流纹岩类的成因: 洋壳到陆壳的转化[D].青岛: 中国科学院大学(中国科学院海洋研究所), 2017. [87] 杨涛, 李智明, 张乐, 等.东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J].高校地质学报, 2017, 23(3):452-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201703008 [88] 刘建楠, 丰成友, 何书跃, 等.青海野马泉铁锌矿床二长花岗岩锆石U-Pb和金云母Ar-Ar测年及地质意义[J].大地构造与成矿学, 2017, 41(6):1158-1170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706013 [89] 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201202025.htm [90] 丁烁, 黄慧, 牛耀龄, 等.东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J].岩石学报, 2011, 27(12):3603-3614. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112008