Calculation method and application of internal force of anchor pile based on "three-stage method"
-
摘要: 针对抗滑桩常因地质条件、地形地貌等原因导致受荷段底面与嵌固段顶面不在同一水平面的情况,将此段划为次受荷段,并推导了次受荷段桩后设计荷载大小计算公式和荷载分布公式,以及在弹性地基梁和悬臂梁模型下的适用于悬臂桩和锚索桩内力与挠度计算通用公式。以巴东县焦家湾移民安置点库岸防护工程预应力锚索桩为例,研究次受荷段对抗滑桩内力和挠度影响。结果表明:忽略次受荷段后土压力作用的传统计算方法会使桩身弯矩计算结果偏小,导致桩身配筋量不足,存在设计安全隐患。再以锚索排数、位置为控制变量,研究其对预应力锚索桩内力和挠度的影响,提出预应力锚索可有效地降低抗滑桩工程造价;增加预应力锚索的排数有利于调节抗滑桩内力分布,设计时应优先考虑将锚索设置为多排锚索。Abstract: In view of the fact that the bottom surface of the loaded section and the top surface of the embedded section are not in the same horizontal plane due to geological conditions, topography and other reasons, this paper classifies this section as a secondary load section and derives the formula of designed load calculation and distribution about this secondary load section. As well as general formulas for the calculation of internal force, deflection of cantilever piles, anchor cable piles under elastic foundation beam and cantilever beam models. Taking the prestressed anchor piles of the reservoir bank protection project at Jiaojiawan resettlement site in Badong County as an example, the influence of the internal force and deflection of the anti-slide piles in the secondary load section is studied. The results show that the traditional calculation method that ignoring the effect of the earth pressure after the secondary load will make the calculation result of the pile bending moment smaller and leads to insufficient reinforcement of the pile, which really has a safety risk. Taking the number and position of the anchor cables as the control variables, the influence on the internal force and deflection of the prestressed anchor cables is studied, and it is proposed that the prestressed anchor cables can effectively reduce the construction cost of anti-slide piles; increasing the number of prestressed anchor cables which is beneficial to adjust the internal force distribution of anti-slide piles, and multi-row anchor cables should be given priority in the design.
-
Key words:
- residual sliding force /
- secondary load section /
- design load /
- deflection /
- anchor pile design
-
图 2 “三段法”划分示意图(据文献[15]修改,2018)
h1, h2, h3分别为主受荷段、次受荷段和嵌固段高度(m);F1(θ1),F2(θ2),F3(θ3)分别为集中力1, 2, 3(kN),其中θ1,θ2,θ3分别为集中力F1,F2,F3的倾角(°);L1,L2,L3分别为集中力1, 2, 3到桩顶的距离(m)
Figure 2. Three-segment division diagram
表 1 岩土物理力学参数
Table 1. Geotechnical physical and mechanical parameters
岩土名称 重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 天然 饱和 天然 饱和 天然 饱和 碎石夹土 22.0 22.5 13.0 11.0 22.0 20.0 强风化粉砂质泥岩 26.0 26.5 250.0 200.0 35.0 33.0 弱风化粉砂质泥岩 26.6 27.0 450.0 350.0 38.0 36.0 表 2 设计荷载取值
Table 2. Design load value
计算方法 剩余下滑力/(kN·m-1) 主动土压力/(kN·m-1) 设计荷载/(kN·m-1) “三段法” 1 664.72 1 491.05 1 664.72 “二段法1” 1 664.72 — 1 664.72 “二段法2” — 1 917.31 1 917.31 表 3 锚索拉力值
Table 3. Anchor pull value
锚索排数 位置/m 锚索拉力/kN 单排 0.5 4 355.81 3.5 4 495.10 6.5 4 573.71 双排 0.5,3.5 1 557.68,2 197.29 0.5,6.5 1 100.41,3 061.97 3.5,6.5 1 430.37,2 836.38 三排 0.5,3.5,6.5 855.46,1 139.05,1 978.99 -
[1] 胡新丽, 王亮清, 唐辉明, 等.三峡库区库岸滑坡抗滑桩设计的几个关键问题[J].地质科技情报, 2005, 24(增刊1):121-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb2005z1033 [2] Hui Ding, Jie Chen, Li Song.The force analysis of anchor anti-slide pile in slope reinforcement under seismic load[J].Applied Mechanics and Materials, 2015, 777:148-153. doi: 10.4028/www.scientific.net/AMM.777.148 [3] Zheng Yingren, Zhao Shangyi, Lei Wenjie, et al. New method of designing anti-slide piles:The strength reduction FEM[J].Engineering Sciences, 2010, 8(3):2-11. http://www.cqvip.com/QK/71135X/201107/35300815.html [4] 铁道部第二勘察设计院.抗滑桩设计与计算[M].北京:中国铁道出版社, 1983. [5] 晏鄂川, 戴光忠, 马敢林.巴东新县城区滑坡防治设计思考[J].地质科技情报, 2002, 21(4):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200204017 [6] Wu Xinxing, Lu Yingfa, Fu Xudong.Mechanism and theoretical calculations of buttress anti-slide pile[J]. Advanced Materials Research, 2013, 671:713-717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.671-674.713 [7] 王卓娟, 李孝平.抗滑桩在滑坡治理中的研究现状与进展[J].灾害与防治工程, 2007, 13(1):45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702484711 [8] 武小菲, 杨涛, 张俊云.半坡抗滑桩合理位置确定的探讨[J].路基工程, 2008, 24(2):135-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ljgc200802066 [9] 佴磊, 马丽英, 冷曦晨, 等.滑坡治理中的抗滑桩设计[J].吉林大学学报:地球科学版, 2002, 21(4):162-165. http://www.cqvip.com/Main/Detail.aspx?id=6125663 [10] Wang Hao, Wang Peng, Qin Hongyu, et al.Method to control the deformation of anti-slide piles in Zhenzilin Landslide[J]. Applied Sciences, 2020, 10(8):28-31. [11] 戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报, 2002, 21(4):517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200204013 [12] 张浩, 石名磊, 郭院成.土体侧移作用下被动桩受力变形的简化解析计算[J].东南大学学报:自然科学版, 2016, 46(2):392-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dndxxb201602026 [13] 祝廷尉, 胡新丽, 徐聪, 等.嵌岩桩抗滑特性的物理模型试验研究[J].岩土力学, 2014, 35(增刊1):165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1023 [14] 高波, 石胜伟, 张世林, 等.不同自由段长度的滑坡前缘抗滑桩受力变形特性的现场模型试验研究[J].自然灾害学报, 2017, 26(5):183-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201705021 [15] 苏爱军, 霍欣, 王杰涛, 等.悬臂式抗滑桩内力计算的"三段法"[J].岩土工程学报, 2018, 40(3):512-519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201803015 [16] 龙驭球, 包世华, 支秉琛.结构力学[M].北京:高等教育出版社, 2000. [17] Guo Zhiguang, Cheng Guoyong, Wang Fan.Analytic solutions of rupture angle in coulomb's earth pressure theory[J].World Journal of Engineering, 2014, 10(6):573-576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=629f767f94c6c5cf143cde3d2e60bcdf [18] Yang Taihua, He Huaijian, Gong Xiangchao.Analysis again for earth pressure calculation theory considering displacement effects[J].Advanced Materials Research, 2012, 1494:2755-2759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.368-373.2755 [19] Wen Shujie, Li You, Chen Xin.Stability analysis of slope with arbitrary sliding surface on multi strata using minimum potential energy principle[J].Advanced Materials Research, 2011, 250:2588-2591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.250-253.2588 [20] 陈鑫, 向先超, 刘凯, 等.小桩距下的抗滑桩后滑坡推力分布规律分析[J].地质科技情报, 2019, 38(6):157-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906018 [21] 王桂林, 何晓樟, 方舟.结合结构面统计的侧向岩石压力计算方法[J].地下空间与工程学报, 2019, 15(5):1490-1497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj201905027 [22] Wei Bo, Fan Jiang, Chen Yinghui, et al.The analysis of pile deformat on impact factor of pile retaining wall in expansive soil area[J].Applied Mechanics and Materials, 2012, 204:230-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.204-208.230 [23] 晏鄂川, 刘焕斌, 李相依, 等.桩锚结构变形协调方法的改进研究[J].岩土力学, 2009, 30(5):1446-1450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200905046 [24] 张海宽, 张友, 刘涛, 等.基于统一强度理论多层滑坡体中抗滑桩最大桩间距研究[J].地质科技情报, 2017, 36(5):209-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201705028