Intelligent identification method for rock discontinuities properties by digital borehole panoramic images
-
摘要: 数字钻孔全景影像是识别深部岩体结构面的主要方法,传统解译方法主要依靠手动操作完成,其结果存在较强的人为性、主观性和较大误差。针对数字钻孔全景影像技术,提出了一种考虑结构面图像灰度分布特点的智能识别新方法。通过钻孔图像的灰度化、降噪预处理后利用结构面定位信号特征值D定位结构面,获取其所在区域图像;再进行边缘检测、阈值分割及形态学等处理,通过拟合边缘曲线并结合数学表征方法实现了结构面特征(产状、隙宽等几何参数)的智能化识别。通过对地下水封洞库工程深部岩体数字钻孔影像的实例分析,运用本智能识别方法获得结构面特征信息相对于传统人工识别方法,其结果的准确性和客观性更强、批量识别效率更高。这对这数字钻孔影像的智能、快速识别具有一定的参考价值。Abstract: Digital borehole panoramic imaging technique is the main method to identify the discontinuities properties of deep rock mass. The traditional identification method mainly relies on manual operation, therefore the results are artificial, subjective and inaccurate. A new intelligent identification method is proposed considering gray level distribution of rock discontinuities for the digital borehole panoramic imaging technique. The panoramic images are firstly pre-processed by graying and noise reduction, and positioned the joints by the eigenvalue, D, to obtain the joints region images. The joints images are processed after edge detection, threshold partition and morphology processing. Finally, intelligent identification of discontinuities characteristics are realized by joints edge curve fitting and mathematical calculation, which are dip direction, dip and aperture. Compared with a traditional artificial method, the proposed technique is more accurate and objective, and more efficient in batch images identification.
-
表 1 结构面几何参数识别结果
Table 1. Identification of geometric parameters of discontinuities
结构面编号 倾向/(°) 倾角/(°) 隙宽/mm 直接计算法 边缘垂直距离换算法 人工提取 ① 自动识别 34.69 30.05 4.59 4.20 / 人工识别 31.98 24.83 / / 4.50 ② 自动识别 29.91 37.23 3.58 3.25 / 人工识别 27.88 31.82 / / 3.30 -
[1] 黎照洪, 胡成, 陈刚, 等.烟台水封能源洞库水幕钻孔布设方案优化[J].地质科技情报, 2016, 35(6):212-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201606029 [2] 黄伟, 项伟, 崔德山, 等.连续介质理论与块体理论在地下水封油库围岩稳定性分析中的应用:以烟台某地下水封油库为例[J].地质科技情报, 2016, 35(1):166-171. http://www.cqvip.com/QK/93477A/201601/667744856.html [3] 葛云峰, 钟鹏, 唐辉明, 等.基于钻孔图像的岩体结构面几何信息智能测量[J].岩土力学, 2019, 40(11):4467-4476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201911038 [4] 曹洋兵, 晏鄂川, 胡德新, 等.岩体结构面产状测量的钻孔摄像技术及其可靠性[J].地球科学:中国地质大学学报, 2014, 39(4):473-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201404010 [5] 黄达, 钟助.基于单个钻孔孔壁电视图像确定地下岩体结构面产状的普适数学方法[J].地球科学:中国地质大学学报, 2015, 40(6):1101-1106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201506014 [6] 高金栋, 周立发, 冯乔, 等.储层构造裂缝识别及预测研究进展[J].地质科技情报, 2018, 37(4):158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201804021 [7] 王川婴, 邹先坚, 韩增强, 等.一种钻孔图像结构面自动识别与参数提取方法: 中国, 104915640[P].2015-05-22. [8] Xavier A, Guerra C, Andrade A.Fracture analysis in borehole acoustic images using mathematical morphology[J].Journal of Geophysics and Engineering, 2015, 12(3):492-501. doi: 10.1088/1742-2132/12/3/492 [9] Thapa B, Hughett P, Karasaki K.Semi-automatic analysis of rock fracture orientations from borehole wall images[J].Geophysics, 1997, 62(1):129-137. http://adsabs.harvard.edu/abs/1997Geop...62..129T [10] 吴剑, 冯少孔, 李宏阶, 等.钻孔成像中结构面自动判读技术研究[J].岩土力学, 2011, 32(3):951-957. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201103051 [11] 汪进超, 王川婴, 胡胜, 等.孔壁钻孔图像的结构面参数提取方法研究[J].岩土力学, 2017, 38(10):3074-3080. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201710038 [12] 邹先坚, 王川婴, 韩增强, 等.全景钻孔图像中结构面全自动识别方法研究[J].岩石力学与工程学报, 2017, 36(8):1910-1920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708009 [13] Dias L, Bom C, Faria E, et al.Automatic detection of fractures and breakouts patterns in acoustic borehole image logs using fast-region convolutional neural networks[J].Journal of Petroleum Science and Engineering, 2020, 191:107099. http://www.sciencedirect.com/science/article/pii/S0920410520301881 [14] Zou X, Wang C, Wang Y, et al.Morphological feature description method of structural surface in borehole image during In-situ instrumentation[J].Rock Mechanics and Rock Engineering, 2020, 53:2947-2956. doi: 10.1007/s00603-020-02072-9 [15] 夏丁, 葛云峰, 唐辉明, 等.数字钻孔图像兴趣区域分割与岩体结构面特征识别[J/OL].地球科学, http://kns.cnki.net/kcms/detail/42.1874.P.20200130.1408.002.html. [16] 张贤亮, 尚尚, 魏海峰.基于LOWESS回归的一阶海杂波识别算法[J].电子器件, 2019, 42(2):458-462. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzqj201902037 [17] 黄喻, 黄思静.上扬子晚古生代海相地层锶同位素曲线的LOWESS拟合[J].矿物岩石, 2009, 29(1):74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200901012 [18] 殷苏民, 朱锦萍, 王祖声, 等.基于顶帽变换和最大类间方差法的图像分割方法研究[J].科学技术与工程, 2014, 14(7):60-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201407013 [19] Otsu N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4310076 [20] 唐钱龙, 谭园, 彭立敏, 等.基于数字图像技术的隧道衬砌裂缝识别方法研究[J].铁道科学与工程学报, 2019, 16(12):3041-3049. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cstdxyxb201912018