Geological modeling method of gravel braided river outcrop: A case from the 35 section of outcrop area of Heiyoushan in Karamay as an example
-
摘要: 露头研究对认识地下地质情况具有举足轻重的作用,通过露头揭示的沉积规律可以更加精确地描述地下同类型的沉积特征。以克拉玛依油田黑油山露头区35剖面为例,采用RMS地质建模软件的基于目标的Composite方法,确立建模基本目标体,评估多期河流沉积的形态规律,建立与露头认识一致的辫状河砂体的空间展布模型。研究表明,通过Composite方法多次迭代得到了辫状河多期河道侧积与切割的理想结果;通过目标函数和接收概率的退火模拟方法能够解决辫状河和三角洲河道砂体的几何形态问题。Abstract: Outcrop study plays an important role in understanding underground geological conditions. The type of deposition of the same type can be described more precisely by the sedimentation law revealed by outcrops. However, it is difficult to describe the shape, scale, orientation, and scale of target body in numerical modeling.Based on the profile of black oil hill outcrop area of Karamay Oilfield, using the Composite method based on RMS, the basic object of modeling is established. The regularity of multi-period river sedimentation is evaluated and a spatial distribution model of braided river sand bodies being consistent with outcrops is established.
-
Key words:
- braided river /
- outcrop /
- geological modeling /
- target based /
- Heiyoushan
-
图 3 黑油山35剖面(a)与素描图(b)
Ⅰ~Ⅶ, CHⅠ~CHⅦ均为河道单元编号;5A~5H.5级界面编号;③代表三级层序界面;其他代号为岩相代码,其含义见表 1
Figure 3. Profile (a) and sketch (b) of section 35 in Heiyoushan
图 4 黑油山35剖面典型段岩相剖面
(F.粉砂质泥岩;S.砂岩; G.砾岩; A~E井位置见图 3)
Figure 4. Typical section of 35 section petrographic of Heiyoushan
图 7 黑油山露头区35实际剖面与Composite模拟结果对比图(1~26同图 6)
a.黑油山露头区35剖面;b.多次实现统计的最终结果
Figure 7. Comparison of actual section 35 and composite simulation results in Heiyoushan outcrop area
表 1 黑油山35剖面岩相类型及特征
Table 1. Petrographic type and characteristics of section 35 in Heiyoushan
岩相代码 岩石相名称 沉积构造 成因解释 Gm 块状砂砾岩 块状层理 河道滞留沉积物 Gt 槽状交错层理细砾岩中粗砂岩 大型槽状交错层理 河道滞留沉积物 St 具槽状交错层理的含砾中粗砂岩 槽状交错层理 河道充填 Sp 具板状交错层理的含砾中粗砂岩 大型板状交错层理 冲刷-河道滞留沉积物 Sst 具交错层理细砂岩 小型交错层理 河道充填 Sh 具平行层理中细砂岩 平行层理 冲刷-充填后逐渐淤积 Fp 具水平层理的泥质粉砂岩 水平层理 河道废弃淤积充填 Fm 泥岩 纹层状至块状 泛滥平原沉积 表 2 黑油山35剖面沉积地质体构型分级
Table 2. Classification of sedimentary geological body configurations in section 35 in Heiyoushan
界面分级 6 5 4 3 2 1 0 沉积体 多期河道垂向叠置 同期河道侧向拼切 单一辫状水道废弃河道 增生体 层系组 层系 纹层 表 3 黑油山35剖面不同期次河道砂体地质知识库
Table 3. Geological knowledge base of the sandbodies of different secondry channels of section 35 in Heiyoushan
河道砂体 最大厚度/m 平均厚度/m 河道中心厚度/m 宽度/m 宽厚比 交切关系 几何形态 Ⅰ 1.5 1.0 1.5 7.1 7.1 河道砂体Ⅳ侧向切割,河道砂体Ⅱ垂向冲刷 楔形 Ⅱ 1.4 0.9 1.4 7.0 7.8 河道砂体Ⅳ侧向切割,河道砂体Ⅰ垂向叠置,河道Ⅲ垂向冲刷 楔形 Ⅲ 1.5 1.1 1.5 7.8 7.1 河道砂体Ⅳ侧向切割 楔形 Ⅳ 1.5 1.3 1.5 10.4 8.0 河道砂体Ⅴ垂向冲刷、河道砂体Ⅰ、Ⅱ、Ⅲ侧向交切 透镜状 Ⅴ 2.0 1.6 2.0 13.2 8.3 河道砂体Ⅵ侧向切割,河道砂体Ⅳ垂向叠置 半透镜体状 Ⅵ 1.6 1.3 1.6 10.7 8.2 河道砂体Ⅴ侧向交切,河道砂体Ⅶ侧向切割 半透镜体状 Ⅶ 1.1 0.9 1.1 7.1 7.9 河道砂体Ⅵ侧向交切,河道砂体Ⅷ垂向冲刷 半透镜体状 Ⅷ 0.9 0.8 0.9 4.6 5.8 河道砂体Ⅶ垂向叠置 透镜状 表 4 黑油山35剖面不同期次河道模拟参数
Table 4. Simulation parameters of the different period water courses of section 35 in Heiyoushan
河道砂体 河道模拟参数 基本模型 宽度/m 厚度/m 方位角/(°) 倾角/(°) 宽度 方差 厚度 方差 倾角 方差 Ⅰ 7.1 0.5 1.0 0.5 101 15 3 Ⅱ 7.0 0.5 0.9 0.5 101 15 3 Ⅲ 7.8 0.6 1.1 0.4 101 15 3 Ⅳ 10.4 0.9 1.3 0.2 101 -4 2.0 Ⅴ 13.2 1.2 1.6 0.4 101 -3 1.5 Ⅵ 10.7 1.0 1.3 0.3 101 -3 1.5 Ⅶ 7.1 0.5 0.9 0.2 101 -1 0.5 Ⅷ 4.6 0.3 0.8 0.1 101 0 0.5 -
[1] 于兴河, 李胜利.碎屑岩系油气储层沉积学的发展历程与热点问题思考[J].沉积学报, 2009, 27(5):880-893. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905012 [2] Journal A G.Nonparametric estimation of spatial distributions[J].Journal of the International Association for Mathematical Geology, 1983, 15(3):793-806. doi: 10.1007/BF01031292 [3] Benaafi M, Hariri M, Al-shaibani A, et al.Integrated geomechanical petrographical and petrophysical study of the sandstones of the Wajid Group[J].Journal of African Earth Sciences, 2018, 143:162-177. doi: 10.1016/j.jafrearsci.2018.03.011 [4] El Aal A A.Assessment of physicomechanical parameters in the lower red unit (LRU)of the Wajid sandstone, Bir Askar, Najran, Saudi Arabia[J].Egyptian Journal of Petroleum, 2017, 26:565-578. doi: 10.1016/j.ejpe.2016.08.004 [5] Knox R W, Franks S G, Cocker J D.Stratigraphic evolution of heavy-mineral provenance signatures in the sandstones of the Wajid Group(Cambrian to Permian), southwestern Saudi Arabia[J].Geoarabia, 2007, 12(4):65-96. http://www.researchgate.net/publication/298989169_Stratigraphic_evolution_of_heavy-mineral_provenance_signatures_in_the_sandstones_of_the_Wajid_Group_Cambrian_to_Permian_southwestern_Saudi_Arabia [6] Alqubalee A, Babalola L, Abdullatif O, et al.A factors controlling reservoir quality of a Paleozoic tight sandstone, Rub al Khali basin, Saudi Arabia[J].Arabian Journal for Science and Engineering, 2019, 44(7):489-507. doi: 10.1007/s13369-019-03885-9 [7] 吴胜和, 范峥, 许长福, 等.新疆克拉玛依油田三叠系克下组冲积扇内部构型[J].古地理学报, 2012, 14(3):331-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201203007 [8] 贾爱林, 陈亮, 穆龙新, 等.扇三角洲露头区沉积模拟研究[J].石油学报, 2000, 21(6):107-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200006020 [9] 于兴河, 马兴祥, 穆龙新, 等.辫状河储层地质模式及层次界面分析[M].北京:石油工业出版社, 2004:60-106. [10] Mahgoub M I, Padmanabhan E, Abdullatif O M.Sedimentological reservoir characteristics of the paleocene fluvial/lacustrine Yabus sandstone, Melut basin Sudan[J].Journal of African Earth Sciences, 2016, 123:75-88. doi: 10.1016/j.jafrearsci.2016.06.018 [11] Melvin J, Sprague R A.Advances in Arabian stratigraphy:origin and strati graphic architecture of glaciogenic sediments in Permian-Carboniferous Lower Unayzah sandstones, eastern central Saudi Arabia[J].Geoarabia, 2006, 11(4):105-152. http://www.researchgate.net/publication/283821303_Advances_in_Arabian_stratigraphy_Origin_and_stratigraphic_architecture_of_glaciogenic_sediments_in_Permian-Carboniferous_lower_Unayzah_sandstones_eastern_central_Saudi_Arabia [12] Maris R, Pille L, Argo J.Carbonate cementation in the late glacial outwash and beach deposits in northern Estonia.Est[J].Journal of African Earth Sciences, 2014, 63(1):30-44. http://www.researchgate.net/publication/277674456_Carbonate_cementation_in_the_late_glacial_outwash_and_beach_deposits_in_northern_Estonia [13] 刘顺生, 焦养泉, 朗风江, 等.准噶尔盆地西北缘露头区克拉玛依组沉积体系及演化序列分析[J].新疆石油地质, 1999, 20(6):485-489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz199906008 [14] Jiao Yangquan, Yan Jiaxin, Li Sitian, et al.Architectural units and heterogeneity of channel reservoirs in the Karamay Formation, outcrop area of Karamay Oilfield, Junggar Basin, northwest China[J].AAPG Bulletin, 2005, 89(4):529-545. doi: 10.1306/10040400955 [15] Miall A D.Architectural-element analysis:A new method of facies analysis applied to fluvial deposits[J].Earth-Science Reviews, 1985, 22(4):261-308. doi: 10.1016/0012-8252(85)90001-7 [16] Dutton S P, White C D.Calcite cement distribution and its effect on fluid flow in adeltaic sandstone, Frontier Formation, Wyoming[J].AAPG Bulletin, 2002, 86(12):2007-2021. http://www.researchgate.net/publication/242402591_Calcite_cement_distribution_and_its_effect_on_fluid_flow_in_a_deltaic_sandstone_Frontier_Formation_Wyoming [17] Wanas H A, Abdel-Maguid N M.Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia:Implications for provenance and tectonic setting[J].Journal of Asian Earth Sciences, 2006, 27:416-429. doi: 10.1016/j.jseaes.2005.05.002 [18] 王恺其, 肖凡.多点地质统计学的理论、方法、应用及发展现状[J].地质科技情报, 2019, 38(6):256-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906030 [19] 林克湘, 张昌民, 刘怀波, 等.青海油砂山油田迷宫式分流河道砂体地质模型的建立[J].石油与天然气地质, 1995, 16(2):98-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500493661 [20] 张文彪, 段太忠, 刘彦锋, 等.定量地质建模技术应用现状与发展趋势[J].地质科技情报, 2019, 38(3):264-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903029 [21] 吴胜和.储层表征与建模[M].北京:石油工业出版社.2010:303-305. [22] 印森林, 吴胜和, 冯文杰, 等.基于辫状河露头剖面的变差函数分析与模拟[J].中南大学学报:自然科学版, 2013, 44(12):4988-4994. http://www.cqvip.com/QK/90745B/201312/48691417.html [23] 高金栋, 周立发, 冯乔, 等.储层构造裂缝识别及预测研究进展[J].地质科技情报, 2018, 37(4):158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201804021