Characteristics and significance of platinum-group elements (PGEs) in polymetallic nodules from CCZ, East Pacific
-
摘要: 为了研究多金属结核的成矿机理,对中国大洋第45航次在东太平洋CC区(Clarion-Clipperton zone)所获得的20枚多金属结核进行了主量、微量及铂族元素分析测试,并与其他区域不同类型的多金属结核进行了对比。结果表明,研究区多金属结核基本为混合型结核,其PGEs总质量分数(w(ΣPGE))为77.2×10-9~197×10-9,平均值为136×10-9,明显低于库克(Cook)岛海域典型的水成型结核的值(w(ΣPGE)=306×10-9);研究区结核球粒陨石标准化PGEs配分模式与水成型结核及富钴结壳非常相似,均呈现明显的Pt正异常及从Os到Pt逐渐富集、从Pt到Pd逐渐亏损的特征,结合海水的PGEs配分特征及前人研究结果,表明结核中PGEs应该直接来源于海水;研究区多金属结核w(ΣPGE)与w(Fe2O3)表现为正相关,与w(MnO)表现为负相关,而Cook岛海域水成型结核w(ΣPGEs)则与w(MnO)表现为正相关,与w(Fe2O3)表现为负相关,表明不同成因类型的多金属结核PGEs的赋存载体有所不同,水成型结核中PGEs主要赋存在锰矿物相中,而混合-成岩型结核则主要赋存在铁矿物相中,且成岩作用越强,结核富集PGEs的能力越低。研究成果对于东太平洋多金属结核成矿机理及其赋存载体研究有一定的指示意义。Abstract: The major, trace and platinum-group elements (PGEs) concentration of 20 polymetallic nodules obtained during the DY-45th Cruise from Clarion-Clipperton Zone (CCZ) of East Pacific were analyzed.The results show that the polymetallic nodules in the study area are basically mixed-type, and its total PGEs contents (ΣPGE) range from77.2×10-9 to 197×10-9, with an average of 136×10-9, which is significantly lower than that of hydrogenetic nodules in sea area of Cook Island (ΣPGE=306×10-9).The chondrite-normalized PGEs patterns of our study nodules are very similar to that of hydrogenetic nodules and cobalt-rich crusts, with all being characterized by positive Pt anomalies, gradual enrichment from Os to Pt and depletion from Pt to Pd.Combined with the characteristics of PGEs distribution in seawater and previous studies, it is suggested that PGEs in nodules should be derived directly from seawater.It is found that ΣPGE of polymetallic nodules in the study area are positively correlated with Fe and negatively correlated with Mn, but are positively correlated with Mn and negatively correlated with Fe in the sea area of Cook Island, indicating that the PGEs host-phases in different genetic nodules are different.PGEs in hydrogenetic nodules may mainly occur in manganese mineral phases, while mixed type-diagenetic nodules may mainly occur in iron mineral phases and the stronger the diagenesis is, the lower the ability of nodules is to enrich PGEs.
-
表 1 东太平洋CC区多金属结核中Fe2O3、MnO、PGEs质量分数及其相关参数
Table 1. Fe2O3, MnO, PGEs contents and related parameters of polymetallic nodules from CCZ, East Pacific
样品 Pt Pd Rh Ru Ir Os ΣPGE Pt/Pt* Pd/Pd* Pt/Pd MnO Fe2O3 Mn/Fe wB/10-9 wB/% 45II-KW1-S05-BC45 95.1 3.23 4.31 7.04 1.25 0.50 111 6.75 0.062 29.4 32.5 12.2 2.94 45II-KW1-S06-BC51 139 4.11 6.98 10.70 2.14 0.55 163 6.87 0.054 33.8 31.0 15.1 2.28 45II-KW1-S07-BC48 110 2.77 5.26 8.19 1.53 0.52 128 7.63 0.046 39.7 32.6 13.4 2.69 45II-KW1-S08-BC35 124 4.69 6.76 9.71 1.84 0.55 148 5.83 0.069 26.4 28.3 15.1 2.07 45II-KW1-S14-BC30 148 4.24 9.59 13.90 2.73 0.83 179 6.14 0.053 34.9 29.1 19.2 1.68 45II-KW1-S18-BC34 138 4.43 6.94 10.80 1.89 0.34 162 6.59 0.059 31.2 30.3 15.0 2.24 45II-KW1-S18-BC34 120 3.83 6.33 9.94 1.88 0.61 143 6.45 0.059 31.3 30.3 16.1 2.09 45II-KW1-S20-BC21 152 3.12 8.24 12.80 2.27 0.49 179 7.94 0.038 48.7 29.8 16.1 2.05 45II-KW1-S22-BC24 165 3.15 9.87 15.50 2.63 0.74 197 7.83 0.035 52.4 29.7 19.2 1.73 45II-KW1-S24-BC26 130 3.48 7.87 12.00 2.07 0.57 156 6.58 0.049 37.4 30.1 16.4 2.03 45II-KW1-S25-BC15 126 3.23 5.76 9.98 1.76 0.80 148 7.73 0.047 39.0 33.1 13.0 2.82 45II-KW1-S30-BC32 144 3.31 8.30 13.20 2.22 1.02 172 7.27 0.042 43.5 31.4 16.9 2.05 45II-KW1-S32-BC11 91.2 2.56 4.13 6.91 1.21 0.49 107 7.43 0.052 35.6 30.2 11.8 2.82 45II-KW1-S33-BC12 95.0 2.77 4.20 7.70 1.13 0.45 111 7.37 0.054 34.3 33.0 11.3 3.23 45II-KW1-S35-BC14 121 2.50 6.34 10.80 1.61 0.56 143 8.05 0.038 48.4 32.0 15.3 2.31 45II-KW1-S37-BC28 66.0 2.00 2.88 5.21 0.77 0.30 77.2 7.28 0.056 33.0 33.7 9.49 3.93 45II-KW1-S38-BC76 81.5 2.93 3.67 6.28 1.19 0.54 96.1 6.58 0.066 27.8 35.6 9.53 4.14 45II-KW1-S38-BC76 92.7 3.33 3.91 7.54 1.31 0.34 109 6.80 0.066 27.8 34.7 9.91 3.88 45II-KW1-S39-BC71 88.4 4.31 3.90 7.19 1.55 0.51 106 5.71 0.090 20.5 33.9 11.4 3.31 45II-KW1-S40-BC66 67.9 1.73 2.96 5.34 1.07 0.53 79.5 7.94 0.047 39.3 34.9 11.1 3.49 平均值 115 3.29 5.91 9.54 1.70 0.56 136 7.04 0.054 35.7 31.8 13.9 2.69 最小值 66.0 1.73 2.88 5.21 0.77 0.30 77.2 5.71 0.035 20.5 28.3 9.49 1.68 最大值 165 4.69 9.87 15.50 2.73 1.02 197 8.05 0.090 52.4 35.6 19.2 4.14 Cook岛海域结核[20] 254 7.73 17.80 19.60 5.64 2.00 306 5.92 0.060 32.8 CI球粒陨石[21] 1 010 550 130 710 455 490 3 345 1 1 1.84 原始地幔[21] 7.1 3.9 0.9 5 3.2 3.4 23.5 1 1 1.82 洋壳[22] 2.3 0.2 0.2 1 0.02 0.004 3.72 3.04 0.16 11.5 注:${\rm{Pt}}/{\rm{P}}{{\rm{t}}^*} = \frac{{{\rm{P}}{{\rm{t}}_{\rm{N}}}}}{{\sqrt {{\rm{R}}{{\rm{h}}_{\rm{N}}} \cdot {\rm{P}}{{\rm{d}}_{\rm{N}}}} }}$ [3], ${\rm{Pd}}/{\rm{P}}{{\rm{d}}^*} = \frac{{{\rm{P}}{{\rm{d}}_{\rm{N}}}}}{{{\rm{P}}{{\rm{t}}_{\rm{N}}}}}$ [3],其中PtN, PdN, RhN分别为球粒陨石标准化的值 表 2 研究区多金属结核稀土元素与部分微量元素质量分数
Table 2. REY and some trace elements data for polymetallic nodules in the study area
wB/10-6 样品 稀土元素 微量元素 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ΣREY Ni Cu Co 45II-KW1-S05-BC45 168 508 48.2 172 41.7 10.8 46.5 7.26 42.7 172 8.06 18.1 3.25 19.8 2.84 1 270 11 752 8 429 2 723 45II-KW1-S06-BC51 216 609 60.2 213 51.1 13.1 57.1 8.77 50.7 192 9.41 21.1 3.71 22.7 3.33 1 532 10 116 6 720 2 969 45II-KW1-S07-BC48 193 557 54.1 191 45.6 11.7 50.5 7.80 45.3 173 8.45 18.9 3.36 20.4 2.97 1 383 11 279 7 865 2 845 45II-KW1-S08-BC35 235 685 67.2 239 57.4 15.0 64.2 9.81 56.6 225 10.50 23.6 4.17 24.9 3.64 1 722 8 224 5 560 2 726 45II-KW1-S14-BC30 234 773 65.0 244 58.8 15.5 63.6 9.96 59.0 207 11.40 26.3 4.59 28.1 4.22 1 805 7 108 4 434 3 091 45II-KW1-S18-BC34 148 454 45.7 177 44.1 11.8 46.4 7.62 46.0 159 8.86 20.3 3.52 21.0 3.18 1 196 10 051 6 445 3 175 45II-KW1-S18-BC34 192 640 58.1 225 55.3 14.9 58.8 9.73 59.9 212 11.70 26.8 4.71 28.2 4.25 1 602 8 349 6 084 2 765 45II-KW1-S20-BC21 186 630 57.7 224 55.4 15.1 58.0 9.79 59.6 187 11.60 26.5 4.67 28.8 4.29 1 559 9 073 6 200 3 126 45II-KW1-S22-BC24 204 767 61.7 237 58.7 16.0 59.7 10.30 62.9 208 12.20 27.8 5.00 30.7 4.62 1 765 7 921 4 922 3 288 45II-KW1-S24-BC26 206 899 54.3 215 50.9 13.1 57.0 8.16 47.0 147 9.34 23.7 3.44 23.3 3.54 1 761 8 710 5 680 3 091 45II-KW1-S25-BC15 152 484 40.8 165 39.3 10.2 44.1 6.44 37.0 126 7.41 19.0 2.76 18.8 2.80 1 155 11 636 8 628 2 740 45II-KW1-S30-BC32 205 720 53.6 213 50.4 12.9 56.5 8.08 46.7 151 9.26 23.5 3.44 23.5 3.53 1 581 9 238 5 831 3 224 45II-KW1-S32-BC11 135 412 36.8 150 36.0 9.37 40.6 5.96 34.7 121 6.99 17.8 2.63 17.4 2.65 1 029 10 434 7 603 2 354 45II-KW1-S33-BC12 127 369 34.6 140 34.0 8.71 37.5 5.51 32.1 114 6.39 16.2 2.41 16.5 2.45 946 12 506 9 810 2 456 45II-KW1-S35-BC14 187 621 49.6 200 47.4 12.2 52.2 7.53 43.8 143 8.61 22.1 3.28 21.9 3.28 1 422 10 003 6 820 3 054 45II-KW1-S37-BC28 110 309 30.6 125 30.1 7.75 33.7 4.92 29.0 108 5.90 15.1 2.21 15.0 2.24 829 12 892 11 483 2 111 45II-KW1-S38-BC76 108 294 29.2 120 28.8 7.42 32.3 4.70 27.8 105 5.65 14.4 2.14 14.4 2.19 796 13 239 10 941 2 223 45II-KW1-S38-BC76 110 288 29.7 122 29.4 7.42 32.3 4.72 27.7 104 5.59 14.4 2.11 14.0 2.13 793 13 159 10 923 2 402 45II-KW1-S39-BC71 126 359 34.4 141 33.9 8.70 37.2 5.44 31.9 114 6.39 16.5 2.41 16.2 2.45 936 12 574 10 044 2 509 45II-KW1-S40-BC66 129 366 35.3 144 34.7 8.87 37.9 5.42 32.0 114 6.37 16.4 2.41 16.0 2.41 952 12 513 10 063 2 542 -
[1] 曹德凯.东太平洋CC区与东马里亚纳海盆多金属结核特征对比及控矿要素研究[D].山东青岛: 国家海洋局第一海洋研究所, 2017. [2] Hein J R, Mizell K, Koschinsky A, et al.Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications:Comparison with land-based resources[J].Ore Geology Reviews, 2013, 51(2):1-14. http://www.sciencedirect.com/science/article/pii/S016913681200234X [3] Guan Y, Sun X, Ren Y, et al.Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea[J].Ore Geology Reviews, 2017, 89:206-227. doi: 10.1016/j.oregeorev.2017.06.020 [4] Machida S, Fujinaga K, Ishii T, et al.Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island[J].Geochemical Journal, 2016, 50(6):539-555. doi: 10.2343/geochemj.2.0419 [5] Heller C, Kuhn T, Versteegh G J, et al.The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules[J].Deep Sea Research, Part I:Oceanographic Research Papers, 2018, 142:16-33. doi: 10.1016/j.dsr.2018.09.008 [6] Reykhard L Y, Shulga N A.Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean:Comparison of mineralogy, geochemistry and genesis[J].Ore Geology Reviews, 2019, 110:102933. doi: 10.1016/j.oregeorev.2019.102933 [7] Wegorzewski A V, Kuhn T.The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean[J].Marine Geology, 2014, 357:123-138. doi: 10.1016/j.margeo.2014.07.004 [8] 张振国, 杜远生, 吴长航, 等.南海西北陆缘大型多金属结核的生长过程及其对晚新生代古海洋环境变化的响应[J].中国科学:地球科学, 2013, 43(7):1168-1178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201307011 [9] Menendez A R H J.Controls on the chemical composition of ferromanganese nodules in the Clarion-Clipperton Fracture Zone, eastern equatorial Pacific[J].Marine Geology, 2019, 409:1-14. doi: 10.1016/j.margeo.2018.12.004 [10] Kunzendorf H, Gwozdz R, Glasby G P, et al.The distribution of rare earth elements in manganese micronodules and sediments from the equatorial and southwest Pacific[J].Applied Geochemistry, 1989, 4(2):183-193. http://www.sciencedirect.com/science/article/pii/0883292789900498 [11] Pattan J N.Manganese micronodules:A possible indicator of sedimentary environments[J].Marine Geology, 1993, 113(3/4):331-344. http://www.sciencedirect.com/science/article/pii/002532279390026R [12] Hein J R, Koschinsky A, Halbach P, et al.Iron and manganese oxide mineralization in the Pacific[J].Geological Society of London, Special Publications, 1997, 119(1):123-138. doi: 10.1144/GSL.SP.1997.119.01.09 [13] Koschinsky A, Hein J R.Uptake of elements from seawater by ferromanganese crusts:Solid-phase associations and seawater speciation[J].Marine Geology, 2003, 198(3/4):331-351. http://www.sciencedirect.com/science/article/pii/S0025322703001221 [14] Hodge V F, Stallard M, Koide M, et al.Platinum and the platinum anomaly in the marine environment[J].Earth & Planetary Science Letters, 1985, 72(2):158-162. http://www.sciencedirect.com/science/article/pii/0012821X85900020 [15] Cabral A R, Sattler C D, Lehmann B, et al.Geochemistry of some marine Fe-Mn Nodules and Crusts with respect to Pt Contents[J].Resource Geology, 2010, 59(4):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41328447da9212e7ec5ec9dc6af93d3f [16] 何高文, 孙晓明, 杨胜雄, 等.东太平洋CC区多金属结核铂族元素(PGE)地球化学及其意义[J].矿床地质, 2006, 25(2):164-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200602006 [17] Qiu Z, Dong Y, Ma W, et al.Geochemical characteristics of platinum-group elements in polymetallic nodules from the Northwest Pacific Ocean[J].Acta Oceanologica Sinica, 2020, 39(8):34-42. doi: 10.1007/s13131-020-1616-y [18] von Stackelberg U, Beiersdorf H.The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii[J].Marine Geology, 1991, 98(2/4):411-423. http://www.sciencedirect.com/science/article/pii/002532279190113I [19] Sa R, Sun X, He G.Enrichment of rare earth elements in siliceous sediments under slow deposition:A case study of the central North Pacific[J].Ore Geology Reviews, 2018, 94:12-32. doi: 10.1016/j.oregeorev.2018.01.019 [20] Hein J R, Spinardi F, Okamoto N, et al.Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J].Ore Geology Reviews, 2015, 68:97-116. doi: 10.1016/j.oregeorev.2014.12.011 [21] Mcdonough W F, Sun S S.The composition of the Earth[J].Chemical Geology, 1995, 120(3/4):223-253. http://www.sciencedirect.com/science/article/pii/0009254194001404 [22] Taylor S R, Mclennan S M.The continental crust:Its composition and evolution[M].Oxford:Blackwell Scientific Press, 1985. [23] 殷征欣, 王海峰, 韩金生, 等.南海边缘海多金属结核与大洋多金属结核对比[J].吉林大学学报:地球科学版, 2019, 49(1):261-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201901024 [24] Koschinsky A, Halbach P.Sequential leaching of marine ferromanganese precipitates:Genetic implications[J].Geochimica et Cosmochimica Acta, 1995, 59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4 [25] Hlawatsch S, Neumann T, van den Berg C, et al.Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea:Origin and modes of trace element incorporation[J].Marine Geology, 2002, 182(3/4):373-387. http://www.sciencedirect.com/science/article/pii/S0025322701002444 [26] González F J, Somoza L, León R, et al.Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic):Palaeoenvironmental records of fluid venting and bottom currents[J].Chemical Geology, 2012, 310:56-78. doi: 10.1016/j.chemgeo.2012.03.030 [27] Glasby G P.Manganese:Predominant role of nodules and crusts[M].Bremen:Springer, 2006. [28] Bau M S K K A.Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J].Chemical Geology, 2014, 381:1-9. doi: 10.1016/j.chemgeo.2014.05.004 [29] Bonatti E.Classification and genesis of submarine iron-manganese deposits[M]//Horn D R.Ferromanganese deposits on the ocean floor.Washington D C: National Science Foundation, 1972. [30] Mclennan S M.Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J].Reviews in Mineralogy, 1989, 21(8):169-200. http://ci.nii.ac.jp/naid/10008805387 [31] Wilson G C, Rucklidge J C, Kilius L R, et al.Precious metal abundances in selected iron meteorites:In-situ AMS measurements of the six platinum-group elements plus gold[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1/4):583-588. http://www.sciencedirect.com/science/article/pii/S0168583X96004156 [32] Nozaki Y.Supplementary material to "A fresh look at element distribution in the North Pacific"[J].EOS Transactions, 1997, 78:221-221. http://www.mendeley.com/research/supplementary-material-fresh-look-element-distribution-north-pacific/ [33] 孙晓明, 薛婷, 何高文, 等.太平洋海山富钴结壳铂族元素(PGE)和Os同位素地球化学及其成因意义[J].岩石学报, 2006, 22(12):3014-3026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612017 [34] Wiltshire C, Wen X Y, Yao W D.Ferromanganese crusts near Johnston Island:geochemistry, stratigraphy and economic potential[J].Marine Georesources and Geotechnology, 1999, 17(2/3):257-270. doi: 10.1080/106411999273936 [35] Koide M, Goldberg E D, Niemeyer S, et al.Osmium in marine sediments[J].Geochimica et Cosmochimica Acta, 1991, 55(6):1641-1648. doi: 10.1016/0016-7037(91)90135-R [36] 任江波, 何高文, 姚会强, 等.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J].地球科学, 2016, 41(10):1745-1757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016111100014733 [37] Lei G, Boström K.Mineralogical control on transition metal distributions in marine manganese nodules[J].Marine Geology, 1995, 123(3/4):253-261. http://www.onacademic.com/detail/journal_1000033937463210_2878.html [38] Kasten S, Glasby G P, Schulz H D, et al.Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow[J].Marine Geology, 1998, 146(1/4):33-52. http://www.sciencedirect.com/science/article/pii/S002532279700128X