Multimedia fate modeling of PAHs in Dajiuhu, Shennongjia
-
摘要: 选择美国环境保护署EPA优控污染物NaP(萘)、Phe(菲)、Fla(荧蒽)、BaA(苯并蒽)、Chr(屈)、Pyr(芘)和BaP(苯并芘)7种多环芳烃(polycyclic aromatic hydrocarbons,简称PAHs)作为研究对象,采用Level Ⅲ逸度模型对神农架大九湖地区PAHs多介质归趋进行了模拟,并利用神龙架大九湖大气、土壤、水体和沉积物中PAHs的实际监测数据对模型进行了验证;同时,将气候因素(温度、降水)对环境介质中PAHs转化的影响整合进模型中,探讨了气候变化对PAHs归趋的影响。结果表明:模型计算值与研究区PAHs监测值吻合良好,说明模型参数的选取合理可靠;不同PAHs的相间迁移通量具有一定差异,2环和3环PAHs则以沉积物向水体、水体向大气迁移为主,表现出由沉积物向水体和大气释放的特点,而4环和5环PAHs以大气向土壤和水体向沉积物迁移为主,体现出由大气向土壤和沉积物沉降的特点;温度与水-气、土-气和水-沉积物界面交换净通量存在明显的正相关关系,降水量与水-气、土-气界面交换净通量呈负相关关系,但与水-沉积物界面交换净通量呈正相关关系。本研究结果表明应重视因气候变化而引起的土壤、水体、沉积物的内源释放所造成的二次污染。
-
关键词:
- Level Ⅲ逸度模型 /
- 大九湖 /
- 多环芳烃 /
- 多介质归趋 /
- 温度变化
Abstract: A Level III fugacity model was used to simulate the fate of seven US-EPA priority polycyclic aromatic hydrocarbons (PAHs), including NaP, Phe, Fla, BaA, Chr, Pyr, and BaP, in Dajiuhu, Shennongjia. Monitoring data of PAHs in study areas were used to verify reliability of this model. Meanwhile, the influence of climate factors (i.e., temperature and precipitation) on the transport of PAHs in different environmental media was integrated into the model to discuss the effect of climate change on the transport trend of PAHs in Dajiuhu. The results show that the data from model computation fits with the measured values of PAHs very well. The transfer flux of different PAHs between different phases is totally different. PHAs of ring 2 and ring 3 are dominated by sediments to water, water to air, indicating the characteristics of releasing from sediments to water and air; while PAHs of ring 4 and ring 5 are dominated by from air to soil and from water to sediments, reflecting the characteristics of deposition from air to soil and sediments. A significant positive correlation between temperature and net flux of water-air, soil-air and sediment-water interface was observed. There was a negative correlation between precipitation and net exchange flux at water-air and soil-air interfaces, while a positive correlation between precipitation and sediment-water interfaces. Our results suggested that attentions should be paid to the secondary pollution release from soil, water and sediment caused by climate change.-
Key words:
- Level Ⅲ multimedia fugacity model /
- Dajiuhu /
- PAHs /
- multimedia fate /
- temperature change
-
参数 NaP Phe Fla BaA Chr Pyr BaP 摩尔质量M/(g·mol-1) 128.19 178.23 202.3 228.3 228.3 202.3 252.3 饱和蒸汽压(25℃)/Pa 10.4 0.02 1.05×10-3 1.5×10-5 5.7×10-7 6×10-4 7×10-7 水溶解度(25℃)/(g·m-3) 31 1.1 0.206 0.009 0.002 0.132 0.003 8 lg Kow 3.37 4.57 5.22 5.91 5.61 5.18 6.04 熔点/℃ 80.5 101 166 177 255 156 175 气相中半衰期/h 17 55 170 170 170 170 170 水相中半衰期/h 170 550 1 700 1 700 1 700 1 700 1 700 土壤相中半衰期/h 1 700 5 500 17 000 17 000 17 000 17 000 17 000 沉积物相中半衰期/h 5 500 17 000 55 000 55 000 55 000 55 000 55 000 鱼子相中半衰期/h 170 550 1 700 1 700 1 700 1 700 1 700 悬浮颗粒物子相中半衰期/h 170 550 1 700 1 700 1 700 1 700 1 700 气溶胶子相中半衰期/h 17 55 170 170 170 170 170 注:Kow为正辛醇/水分配系数 表 2 大九湖环境参数
Table 2. Regional environmental parameters of Dajiuhu
环境参数 数据值 来源 环境参数 数据值 来源 气相面积/m2 1.11×107 本研究 气相高度/m 1×103 文献[30] 水相面积/m2 1.11×106 本研究 水深/m 0.96 文献[36] 土壤相面积/m2 9.99×107 本研究 土壤深度/m 0.1 文献[30] 沉积物相面积/m2 1.11×106 本研究 沉积物深度/m 0.1 文献[30] 气相中颗粒物体积分数 2×10-11 文献[30] 水相中悬浮颗粒物体积分数 5×10-6 文献[30] 水相中鱼的体积分数 1×10-6 文献[30] 土壤相水子相体积分数 0.3 文献[30] 土壤相气子相体积分数 0.2 文献[30] 土壤相颗粒物体积分数 0.5 文献[30] 沉积物相颗粒物体积分数 0.3 文献[30] 沉积物相水子相体积分数 0.7 文献[30] 大气相气子相密度/(kg·m-3) 1.185 文献[30] 大气相气溶胶密度/(kg·m-3) 2 000 文献[30] 水的密度/(kg·m-3) 1×103 文献[30] 水相中悬浮颗粒物密度/(kg·m-3) 1 030 文献[18] 水相中鱼的密度/(kg·m-3) 1×103 文献[30] 土壤相中颗粒物密度(kg·m-3) 2.4×103 文献[30] 沉积物中颗粒物密度/(kg·m-3) 2.4×103 文献[30] 土壤中有机碳质量分数/(g·g-1) 3×10-2 文献[37] 沉积物中有机碳质量分数/(g·g-1) 0.4 文献[34] 悬浮颗粒物有机碳质量分数/(g·g-1) 0.2 文献[30] 鱼的脂肪含量/(g·g-1) 0.05 文献[30] 气相侧气水质量迁移系数MTC/(m·h-1) 0.5 文献[30] 水相侧气水MTC/(m·h-1) 0.05 文献[30] 降雨速率/(m·h-1) 1.76×10-4 本研究 干沉降速率/(m·h-1) 10 文献[30] 土壤相中气子相MTC/(m·h-1) 0.02 文献[30] 土壤相中水子相MTC/(m·h-1) 1×10-5 文献[30] 土壤-气相边界层MTC/(m·h-1) 5 文献[30] 沉积物中水子相MTC/(m·h-1) 0.000 1 文献[30] 沉积物沉降速率/(m·h-1) 5×10-7 文献[30] 沉积物再悬浮速率/(m·h-1) 2×10-7 文献[30] 土壤相中水流失速率/(m·h-1) 5×10-5 文献[30] 土壤相中颗粒物流失速率/(m·h-1) 1×10-8 文献[30] 清洗速率/(m·h-1) 2×105 文献[30] 向气相排放速率/(kg·h-1) 0.001 本研究 污水排放速率/(m·h-1) 0.001 本研究 向土壤相排放速率/(m·h-1) 0.001 本研究 向沉积物相排放速率/(m·h-1) 0.001 本研究 气相中平流输入质量浓度/(ng·m-3) 20 文献[35] 表 3 大九湖地区PAHs实际监测值
Table 3. Measured values of PAHs in Dajiuhu
-
[1] 余文超, 杜远生, 汪小妹, 等.黔北务正道地区铝土矿层中燃烧成因PAHs的发现及其古气候意义[J].地质科技情报, 2013, 32(1):57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201301012 [2] Alisopp M, Johnston P.Unseen poisons in Asia:A review of persistent organic pollutants levels in South and Southeast Asia and Oceania[M].Exeter:University of Exeter, 2000:9-12. [3] Loganathan B G, Kannan K.Global organochlorine contamination trends:Anoverview[J].Ambio., 1994, 23(3):187-191. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=8374918&site=ehost-live [4] Iwate H, Tanabe S, Sakai N, et al.Geographical distribution of persistent organochlorines in air, water and sediments from Asia and Oceania, and their implications for global redistribution from lower latitudes[J].Environmental Pollution, 1994, 85:15-33. doi: 10.1016/0269-7491(94)90234-8 [5] Hu T P, Zhang J Q, Ye C, et al.Status, source and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil from the water-level-fluctuation zone of the Three Gorges Reservoir, China[J].Journal of Geochemical Exploration, 2017, 172:20-28. doi: 10.1016/j.gexplo.2016.09.012 [6] 丁洋, 郑煌, 黄焕芳, 等.黄河源区鄂陵湖中多环芳轻的百年沉积记录[J].中国环境科学, 2019, 39(8):3465-3473. http://d.old.wanfangdata.com.cn/Periodical_zghjkx201908041.aspx [7] 梁杏, 张婧玮, 蓝坤, 等.江汉平原地下水化学特征及水流系统分析[J].地质科技通报, 2020, 39(1):21-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb202001003 [8] Qu C K, Xing X L, Stefano A, et al.Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China:Regional source vs.long-range transport and air-soil exchange[J].Atmospheric Environment, 2015, 122:31-40. doi: 10.1016/j.atmosenv.2015.09.008 [9] Daly G L, Wania F.Organic contaminants inmountains[J].Environment Science &Technology, 2005, 39(2):385-398. doi: 10.1021/es048859u [10] Wania F, Haugen J E, Lei Y D, et al.Temperature dependence of atmospheric concentrations of semivolatile organiccompounds[J].Environment Science &Technology, 1998, 32(8):1013-1021. doi: 10.1021/es970856c [11] Wania F, Pacyna J M, Mackay D.Global fate of persistent organic pollutants[J].Toxicological and Environmental Chemistry, 1998, 66(1/4):81-89. doi: 10.1080/02772249809358586 [12] Mackay D.Multimedia environmental models: The fugacity approach[M].Second Edition ed.北京: 化学工业出版社, 2007. [13] 任娇, 王小萍, 王传飞, 等.青藏高原纳木错流域持久性有机污染物的多介质迁移与归趋模拟[J].生态毒理学报, 2017, 12(3):170-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201703015 [14] Wania F, Breivik K, Persson N J, et al.CoZMo-POP 2:A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organicpollutants[J].Environmental Modelling and Software, 2006, 21(6):868-884. doi: 10.1016/j.envsoft.2005.04.003 [15] Huang L, Batterman S A.Multimedia model for polycyclic aromatic hydrocarbons(PAHs) and nitro-PAHs in Lake Michigan[J].Environmental Science & Technology, 2014, 48(23):13817-13825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fd91b10b1986678561ce4786aa252ff [16] Su C, Zhang H, Cridge C, et al.A review of multimedia transport and fate models for chemicals:Principles, features and applicability[J].Science of the Total Environment, 2019, 668:881-892. doi: 10.1016/j.scitotenv.2019.02.456 [17] 陈春丽, 杨洋, 戴星照, 等.鄱阳湖区PAHs的多介质迁移和归趋模拟[J].环境科学研究, 2016, 29(2):218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201602008 [18] Wang C, Feng Y J, Sun Q F, et al.A multimedia fate model to evaluate the fate of PAHs in Songhua River, China[J].Environment Pollution, 2012, 164:81-88. doi: 10.1016/j.envpol.2012.01.025 [19] Wang Y L, Xia Z H, Liu D, et al.Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China[J].Environment Pollution, 2013, 181:115-121. doi: 10.1016/j.envpol.2013.06.015 [20] Ao J T, Chen J W, Tian F L, et al.Application of a Level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River Basin, China[J].Chemosphere, 2009, 74(3):370-376. doi: 10.1016/j.chemosphere.2008.09.085 [21] 刘丹, 张圣虎, 刘济宁, 等.南京地区PCB52多介质迁移归趋行为模拟及环境风险评价[J].生态毒理学报, 2015, 10(2):353-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201502044 [22] 王贺.三江平原典型湿地邻苯二甲酸酯污染分布与迁移模拟[D].哈尔滨: 东北林业大学, 2017. [23] 程浩淼, 陈玉茹, 赵永岭, 等.巢湖水域四溴双酚A的多介质迁移与归趋模拟[J].中国环境科学, 2019, 39(1):314-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201901036 [24] 胡天鹏, 邢新丽, 柯艳萍, 等.偏远高山湿地土壤中PAHs污染特征:以神农架大九湖为例[J].环境科学, 2018, 39(4):1872-1879. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HJKZ201804049 [25] 黄咸雨, 张志麒, 王红梅, 等.神农架大九湖泥炭湿地关键带监测进展[J].地球科学, 2017, 42(6):1026-1038. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706012 [26] 马英歌.多环芳烃物理化学性质的确定及其在逸度模型和上海典型环境研究中的应用[D].上海: 上海交通大学, 2009. [27] Karel V.Handbook of environmental data on organicchemicals[M].4th ed.New York:Van Nostrand Reinhold, 2001:295-305. [28] Paasivirta J, Sinkkonen S, Mikkelson P, et al.Estimation of vapor pressures, solubilities and Henry's law constants of selected persistent organic pollutants as functions of temperature[J].Chemosphere, 1999, 39(5):811-832. doi: 10.1016/S0045-6535(99)00016-8 [29] Beyer A, Wania F, Gouin T, et al.Selecting internally consistent physicochemical properties of organic compounds[J].Environmental Toxicology and Chemistry, 2002, 21(5):941-953. doi: 10.1002/etc.5620210508 [30] 许姗姗, 刘文新, 陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报, 2005, 24(3):476-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200503013 [31] 金梦云, 邢新丽, 柯艳萍, 等.神农架大九湖大气中的多环芳烃[J].环境科学, 2017, 38(5):1760-1768. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201705004 [32] 曹红英, 曹军, 徐福留, 等.天津地区六六六的归宿和跨界面迁移[J].环境化学, 2003, 22(6):548-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx200306005 [33] 汪祖丞, 刘敏, 杨毅, 等.上海城区多环芳烃的多介质归趋模拟研究[J].中国环境科学, 2011, 31(6):984-990. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201106018 [34] 胡天鹏.神农架大九湖泥炭地PAHs及BC高分辨率沉积记录研究[D].武汉: 中国地质大学(武汉), 2017. [35] 李宽, 周家斌, 袁畅, 等.武汉市大气PM2.5中多环芳烃的分布特征及来源[J].环境科学研究, 2018, 31(4):648-656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201804007 [36] 潘晓斌, 何意, 阎梅, 等.神农架大九湖水文水资源现状分析与保护对策[C]//第三届中国湖泊论坛暨第七届湖北科技论坛论文集.2003: 705-713. [37] 卢慧, 丛静, 薛亚东, 等.海拔对神农架表层土壤活性有机碳含量的影响[J].林业科学, 2014, 50(8):162-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201408024 [38] Cheng J O, Kof C, Lee C L, et al.Air-water exchange fluxes of polycyclic aromatic hydrocarbons in the tropical coast, Taiwan[J].Chemosphere, 2013, 90(10):2614-2622. doi: 10.1016/j.chemosphere.2012.11.020 [39] Xing X L, Zhang Y, Yang D, et al.Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in westernChina[J].Atmospheric Environment, 2016, 139:131-138. doi: 10.1016/j.atmosenv.2016.05.027 [40] 彭凤姣, 葛继稳, 李永福, 等.神农架大九湖泥炭湿地水汽通量特征及生态意义[J].安全环境与工程, 2017, 24(5):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201705001 [41] 柯宏伟, 陈凯, 赵雯露, 等.九龙江河口区多环芳烃分布逸度模型和实测分析[J].海洋环境科学, 2016, 35(2):161-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyhjkx201602001 [42] Macdonald R W, Harner T, Fyfe J.Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data[J].Science of the Total Environment, 2005, 342:5-86. doi: 10.1016/j.scitotenv.2004.12.059 [43] Ma J, Cao Z.Quantifying the perturbations of persistent organic pollutants induced by climate change[J].Environmental Science & Technology, 2010, 44(22):8567-8573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d39f85f479931e6b044da33afa529e7 [44] Brinkmann M, Hudjetz S, Cofalla C, et al.Combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events.Part I:Multiple biomarkers in rainbow trout[J].Soil Sediment, 2010, 10:1347-1361. doi: 10.1007/s11368-010-0271-x