Rock constitutive model based on damage partition and unified strength theory
-
摘要: 自然界中岩石内部均存在一定程度的损伤,损伤的持续演化过程对岩体的稳定性极为不利。为了研究岩石的损伤演化过程,将岩石分为未损伤部分、闭合裂隙部分与张开裂隙部分,采用统一强度理论与统计损伤理论分析岩石微元强度的分布,通过分析变形协调条件下各部分的应力-应变特征得到岩石的损伤本构模型与损伤演化模型,与巴东组紫红色泥岩三轴压缩试验结果对比验证后将模型应用于某反倾层状岩质边坡的破坏深度分析。分析结果表明:提出的损伤本构模型可以较好地模拟巴东组紫红色泥岩的三轴压缩应力-应变特性,提出的损伤演化模型可以较好地分析巴东组紫红色泥岩的损伤演化过程,且模型参数具有明确的物理意义;此外,根据基于损伤演化模型的反倾层状岩质边坡破坏深度修正模型计算得到的结果偏保守,用于岩土工程设计偏安全。Abstract: Almost all the rocks in a nature internally contain damage to a certain extent. The proceeding of damage evolution will lead unstability of rocks because of crack coalescence. In this paper, the rocks are divided into three parts, e.g., the undamaged part, the closed crack part and the open crack part. Then, a compatibility analysis of deformation was conducted, and the damage constitutive model and the damage evolution model were proposed based on unified strength theory and statistical damage theory. The models were verified by tested results of triaxial compression test of purple mudstone in Badong formation. Finally, the models were applied to analyse the damaged depth of one anticlinal bedded rock slope. Results indicate that the damage constitutive model corresponds with tested results, e.g., the triaxial stress-strain feature. Also, the damage evolution model well reflects the damage process of samples and the model parameters process distinct physical meanings. Besides, the modified damaged depth model of anticlinal bedded rock slope is more conservative and will bring safety to geotechnical engineering design.
-
Key words:
- rock /
- damage constitutive model /
- damage evolution model /
- unified strength theory /
- damaged depth
-
表 1 模型参数计算结果
Table 1. Calculated results of model parameters
围压/MPa 2 4 8 m 55.97 46.59 31.73 w 272.46 291.22 349.60 -
[1] Cao W G, Zhao H, Li X, et al.Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes[J].Canadian Geotechnical Journal, 2010, 47(8):857-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab09d4e1f2d3ce1ff9366070dcc5ae2 [2] 曹文贵, 张超, 贺敏, 等.基于微观力学特性的脆性岩石变形过程模拟[J].岩土力学, 2016, 37(10):2753-2760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201610003 [3] 王腾飞, 李远耀, 徐勇, 等.基于声发射试验的红层砂岩损伤演化特性分析[J].地质科技情报, 2019, 38(4):247-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201904026 [4] 杨圣奇, 徐卫亚, 韦立德, 等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报:自然科学版, 2004, 32(2):200-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhdxxb200402019 [5] 谢和平, 鞠杨.分数维空间中的损伤力学研究初探[J].力学学报, 1999, 31(3):300-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb199903006 [6] Kachanov L.Time of the rupture process under creep conditions[J].Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk.1958, 8: 26-31. [7] Dougill J W.Mechanics in engineering[M].[S.l.]: ASCE EMD Press, 1976: 333-355. [8] 温韬, 唐辉明, 范志强, 等.巴东组岩石加卸荷力学性质及卸荷本构模型[J].中国矿业大学学报, 2018, 47(4):768-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201804011 [9] Zhou S W, Xia C C, Hu Y S, et al.Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress[J].International Journal of Rock Mechanics and Mining Sciences, 2015, 77:163-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47896ff315c90c9255a6f4d86f6b9e79 [10] 邓华锋, 胡安龙, 李建林, 等.水岩作用下砂岩劣化损伤统计本构模型[J].岩土力学, 2017, 38(3):631-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201703003 [11] 温韬, 刘佑荣, 胡政高.应力区砂岩加卸载条件下能量变化规律及损伤分析[J].地质科技情报, 2015, 34(2):200-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502029 [12] Unteregger D, Fuchs B, Hofstetter G.A damage plasticity model for different types of intact rock[J].International Journal of Rock Mechanics and Mining Sciences, 2015, 80:402-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad37b8d19fea43b5b3c565f3443f1dec [13] Cao P, Youdao W, Yixian W, et al.Study on nonlinear damage creep constitutive model for high-stress soft rock[J].Environmental Earth Sciences, 2016, 75(10):900-907. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4428070cb764a568b3cdd95d52d0228 [14] 孙梦成, 徐卫亚, 王苏生, 等.基于最小耗能原理的岩石损伤本构模型研究[J].中南大学学报:自然科学版, 2018, 49(8):2067-2075. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201808029 [15] 曹文贵, 张升, 赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学, 2006, 27(1):41-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200601008 [16] 曹文贵, 张超, 贺敏, 等.考虑空隙压密阶段特征的岩石应变软化统计损伤模拟方法[J].岩土工程学报, 2016, 38(10):1754-1761. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201610002 [17] Huang S, Liu Q, Cheng A, et al.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology, 2018, 145:142-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efc1a7092c28056e8f1989e0f4fe2da [18] Deng J, Gu D.On a statistical damage constitutive model for rock materials[J].Computers & Geosciences, 2011, 37(2):122-128. http://dl.acm.org/citation.cfm?id=1930541.1930573&coll=DL&dl=GUIDE&CFID=362687682&CFTOKEN=13370148 [19] Liu X S, Ning J G, Tan Y L, et al.Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading[J].International Journal of Rock Mechanics and Mining Sciences, 2016, 85:27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eaf8a6977af4775ebb34dad5143c4805 [20] Hencky H.On the theory of plastic deformations[J].Zeitschrift für Angewandte Mathematik und Mechanik, 1924, 4:323-334. http://adsabs.harvard.edu/abs/1951PPSA...64..140K [21] Weibull W.A statistical theory of the strength of materials[M].Stockholm: Generalstabens Litogra-fiska Anstalts Förlag, 1939. [22] Yu M H, He L N.A new model and theory on yield and failure of materials under the complex stress state[J].Mechanical Behaviour of Materials, 1992, 6:841-846. http://www.sciencedirect.com/science/article/pii/B9780080378909503896 [23] 张泽林, 吴树仁, 唐辉明, 等.反倾岩质边坡的时效变形破坏研究[J].地质科技情报, 2014, 33(5):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201405027 [24] 王飞, 唐辉明, 章广成, 等.雅砻江上游深层倾倒体发育特征及形成演化机制[J].山地学报, 2018, 36(3):411-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb201803008 [25] Huang R, Zhao J, Ju N, et al.Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China[J].Natural Hazards, 2013, 68(2):1021-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4b0529c3414754ab1010b314cc9fa4a [26] Huang R, Lin F, Yan M.Deformation mechanism and stability evaluation for the left abutment slope of Jinping I hydropower station[J].Bulletin of Engineering Geology and the Environment, 2010, 69(3):365-372. doi: 10.1007/s10064-010-0283-1 [27] 刘海军, 巨能攀, 赵建军, 等.层状岩质边坡倾倒变形破坏特征研究[J].合肥工业大学学报:自然科学版, 2017, 40(6):79-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb201706016 [28] 黄润秋, 李渝生, 严明.斜坡倾倒变形的工程地质分析[J].工程地质学报, 2017, 25(5):1165-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201705001