留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环作用下砂岩单轴压缩破坏断口特征分形研究

周盛涛 方文 蒋楠 胡萌 罗学东

周盛涛, 方文, 蒋楠, 胡萌, 罗学东. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518
引用本文: 周盛涛, 方文, 蒋楠, 胡萌, 罗学东. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518
Zhou Shengtao, Fang Wen, Jiang Nan, Hu Meng, Luo Xuedong. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518
Citation: Zhou Shengtao, Fang Wen, Jiang Nan, Hu Meng, Luo Xuedong. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518

冻融循环作用下砂岩单轴压缩破坏断口特征分形研究

doi: 10.19509/j.cnki.dzkq.2020.0518
基金项目: 

国家自然科学基金项目 41572281

详细信息
    作者简介:

    周盛涛(1997-), 男, 现正攻读土木工程专业博士学位, 主要从事岩石力学方面的研究工作。E-mail:stzhou@cug.edu.cn

    通讯作者:

    罗学东(1971-), 男, 教授, 博士生导师, 主要从事岩土体稳定性方面的教学与科研工作。E-mail:cugluoxd@foxmail.com

  • 中图分类号: TU458

Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles

  • 摘要: 寒区岩石的力学特征往往受到冻融循环和荷载的共同影响,冻融岩石单轴压缩破坏断口蕴含着与冻融循环和荷载有关的损伤演化信息,冻融岩石单轴压缩破坏断口研究对冻融岩石断裂破坏机理分析有重要价值。为研究冻融岩石单轴压缩破坏断口形貌特征及其与宏观力学参数之间的关联性,通过摄影观测经历不同次数冻融循环的砂岩单轴压缩破坏断口形貌,采用像素点覆盖法计算断口分维值,探究了断口分维值与宏观力学参数之间的关系。结果表明:随着冻融次数的增加,冻融砂岩的力学性能劣化,单轴抗压强度、弹性模量、断口分维值、耗散能密度逐渐减小,峰值应变增大;单轴抗压强度、弹性模量、耗散能密度均与断口分维值之间存在指数关系,断口分维值越大,对应的单轴抗压强度、弹性模量、耗散能密度越大。冻融岩石单轴压缩破坏断口分维值可作为寒区岩体断裂破坏机理分析的有效参数。

     

  • 图 1  加工并筛选出的标准岩样

    Figure 1.  Standard rock samples after processing and screening

    图 2  高低温试验箱

    Figure 2.  High-low temperature test chamber

    图 3  RMT-150C岩石力学试验机

    Figure 3.  RMT-150C rock mechanics testing machine

    图 4  断面观测示意图

    Figure 4.  Schematic diagram of fracture observation

    图 5  不同次数冻融循环后砂岩的压缩破坏主断裂面图像

    a1, a2, a3.0次;b1, b2, b3.5次;c1, c2, c3.10次;d1, d2, d3.15次;e1, e2, e3.20次;f1, f2, f3.25次;g1, g2, g3.30次

    Figure 5.  Main fracture images of sandstone under different freeze-thaw cycles

    图 6  不同次数冻融循环下断口分维值

    Figure 6.  Fractal dimension of fracture under different freeze-thaw cycles

    图 7  断口分维值随冻融循环次数变化情况

    Figure 7.  Relationship between the fracture fractal dimension and the number of freeze-thaw cycles

    图 8  单轴抗压强度与断口分维值的关系

    Figure 8.  Relationship between uniaxial compressive strength and fracture fractal dimension

    图 9  弹性模量与断口分维值的关系

    Figure 9.  Relationship between elastic modulus and fracture fractal dimension

    图 10  耗散能密度与断口分维值的关系

    Figure 10.  Relationship between dissipated energy density and fracture fractal dimension

    表  1  冻融循环后砂岩单轴压缩试验结果

    Table  1.   Uniaxial compression test results of sandstone after freezing and thawing

    冻融次数n 0 5 10 15 20 25 30
    单轴抗压强度σc/MPa 58.425 49.582 47.419 43.534 41.484 40.505 39.904
    弹性模量E/GPa 16.582 11.558 10.258 9.727 8.785 8.602 8.392
    峰值应变εc/‰ 5.454 5.713 6.064 5.806 6.348 6.333 6.326
    下载: 导出CSV

    表  2  不同次数冻融循环下砂岩破坏断口分维均值

    Table  2.   Fracture fractal dimension of sandstone under different freeze-thaw cycles

    冻融次数 0 5 10 15 20 25 30
    分维均值 2.219 20 2.219 01 2.218 72 2.217 74 2.218 56 2.218 07 2.215 63
    下载: 导出CSV

    表  3  单轴压缩下岩石能量耗散特征值

    Table  3.   Energy dissipation characteristic value of rock failure under uniaxial compression

    冻融次数n 0 5 10 15 20 25 30
    耗散能密度Ud/(MJ·m-3) 39.498 37.594 35.442 28.390 32.314 31.731 28.177
    能量耗散值/J 7.570 7.275 6.740 5.478 6.268 6.156 5.462
    下载: 导出CSV
  • [1] Chen T, Yeung M, Mori N.Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J].Cold Regions Science and Technology, 2004, 38:127-136. doi: 10.1016/j.coldregions.2003.10.001
    [2] Luo X, Jiang N, Fan X, et al.Effects of freeze-thaw on the determination and application of parameters of slope rock mass in cold regions[J].Cold Regions Science and Technology, 2015, 110:32-37. doi: 10.1016/j.coldregions.2014.11.002
    [3] Luo X, Jiang N, Zuo C, et al.Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze-thaw cycles[J].Rock Mechanics and Rock Engineering, 2014, 47:1997-2004. doi: 10.1007/s00603-013-0516-2
    [4] Momeni A, Abdilor Y, Khanlari G R, et al.The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J].Bulletin of Engineering Geology and the Environment, 2015, 75:1649-1656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a068465eecab04b1779d0ec51b6a8bac
    [5] Mu J, Pei X, Huang R, et al.Degradation characteristics of shear strength of joints in three rock types due to cyclic freezing and thawing[J].Cold Regions Science and Technology, 2017, 138:91-97. doi: 10.1016/j.coldregions.2017.03.011
    [6] Wang P, Xu J, Fang X, et al.Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering[J].Cold Regions Science and Technology, 2017, 143:13-22. doi: 10.1016/j.coldregions.2017.07.002
    [7] 杨小敏, 熊梦馨, 罗学东, 等.冻融作用下人工劈裂砂岩结构面强度特性研究[J].地质科技情报, 2019, 38(6):251-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906029
    [8] Yang X, Jiang A, Li M.Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze-thaw cycles[J].Cold Regions Science and Technology, 2019, 161:51-62. doi: 10.1016/j.coldregions.2019.03.008
    [9] 陈有亮, 王朋, 张学伟, 等.花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J].岩土工程学报, 2014, 36(12):2226-2235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201412014
    [10] 韩铁林, 师俊生, 陈蕴生, 等.不同化学腐蚀下砂岩冻融力学特性劣化的试验研究[J].固体力学学报, 2017, 38(6):503-519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb201706003
    [11] Gao F, Wang Q, Deng H, et al.Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone[J].Bulletin of Engineering Geology and the Environment, 2017, 76:1481-1490. doi: 10.1007/s10064-016-0908-0
    [12] Han T, Shi J, Cao X.Fracturing anddamage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles[J].Rock Mechanics & Rock Engineering, 2016, 49(11):4245-4255. doi: 10.1007/s00603-016-1028-7
    [13] Ni J, Chen Y, Wang P, et al.Effect of chemical erosion and freeze-thaw cycling on the physical and mechanical characteristics of granites[J].Bulletin of Engineering Geology and the Environment, 2017, 76:169-179. doi: 10.1007/s10064-016-0891-5
    [14] 俞缙, 张欣, 蔡燕燕, 等.水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J].岩土力学, 2019, 40(2):455-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201902006
    [15] 傅国锋.化学和冻融循环共同作用后砂岩力学性能的劣化机制研究[D].福建厦门: 华侨大学, 2016.
    [16] Qu D, Li D, Li X, et al.Damage evolution mechanism and constitutive model of freeze-thaw yellow sandstone in acidic environment[J].Cold Regions Science and Technology, 2018, 155:174-183. doi: 10.1016/j.coldregions.2018.07.012
    [17] 方振.温度-应力-化学(TMC)耦合条件下岩石损伤模型理论与试验研究[D].长沙: 中南大学, 2010.
    [18] 王朋.化学-温度-应力耦合作用对岩石力学性能的影响[D].上海: 上海理工大学, 2013.
    [19] 张慧梅, 杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报, 2010, 29(3):471-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201003005
    [20] 张慧梅, 杨更社.冻融循环条件下受荷岩石的损伤本构模型[J].武汉理工大学学报:自然科学版, 2013, 35(7):79-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201307016
    [21] Huang S, Liu Q, Cheng A, et al.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology, 2018, 155:142-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efc1a7092c28056e8f1989e0f4fe2da
    [22] Fang W, Jiang N, Luo X.Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition[J].Cold Regions Science and Technology, 2019, 160:31-38. doi: 10.1016/j.coldregions.2019.01.004
    [23] 林道云, 胡小芳.基于Matlab的断面分维求算方法研究[J].煤炭技术, 2009, 28(12):149-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtjs200912068
    [24] 温韬, 刘佑荣, 胡政, 等.高应力区砂岩加卸载条件下能量变化规律及损伤分析[J].地质科技情报, 2015, 34(2):200-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502029
    [25] 王腾飞, 李远耀, 徐勇, 等.基于声发射试验的红层砂岩损伤演化特性分析[J].地质科技情报, 2019, 38(4):247-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201904026
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  582
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18

目录

    /

    返回文章
    返回