Recent advances and prospects of near surface elastic Rayleigh waves
-
摘要: 瑞雷波法已在研究地球内部结构、近地表地球物理工程和超声无损检测等领域中获得了广泛应用,尤其是近年来瑞雷波法作为近地表场地表征新兴领域的前沿技术已成为国际学术研究与应用的热点。对国内外近地表弹性介质瑞雷波勘探的主要研究成果与进展进行了综述,通过对瑞雷波勘探现有的研究成果和进展密切追踪发现当前近地表瑞雷波勘探主要基于水平地表弹性水平层状介质模型,利用单分量瑞雷波相速度频散曲线单目标反演获得一维横波速度剖面和相关岩土力学参数。但是,该方法也存在着现有瑞雷波频散曲线反演极易出现模式误识别、现有单分量单目标瑞雷波反演未充分利用多分量信息、现有瑞雷波相速度反演未充分利用群速度传播特性、现有瑞雷波反演未充分利用质点椭圆极化振动特性等挑战性学术难题和不足。基于上述问题,建议未来近地表弹性介质瑞雷波勘探重点研究方向应集中在进行多模式表面波全速度谱反演研究、多站多分量表面波相速度多目标全速度谱反演研究、单站多分量表面波群速度多目标全速度谱反演研究和单站多分量表面波椭圆极化振动特性多目标反演研究。由此构建新的近地表多分量瑞雷波多目标全速度谱反演理论,引领多分量瑞雷波多目标反演学科前沿,拓展现有单分量瑞雷波单目标反演理论范畴,推动多分量瑞雷波高精度实用勘探技术的发展。Abstract: Rayleigh waves have played an important role in detection of earth internal structure, near surface geophysical engineering, and ultrasonic nondestructive testing. In particular, in recent years a number of studies have explored shallow soil profiles for near surface applications. The main achievements and progress of near surface elastic Rayleigh wave exploration worldwide are summarized. Analyzing the existing research results, we find that current Rayleigh wave research focus on reconstruction of one dimension shear-wave velocity profiles and estimation of geomechanical parameters by single-objective phase velocity dispersion curve inversion of single-component surface waves, which is based on horizontally layered elastic earth model. As a result, this will lead to mode misidentification of multimode dispersion curves, not fully utilizing multicomponent phase velocities and group velocities, or elliptical polarization characteristics of multicomponent surface waves when multimode phase velocity dispersion curves of single-component Rayleigh waves are inverted by single-objective optimization scheme. To deal with challenging difficulties and obstacles presented by previous literature reviews, the future main research directions of near surface elastic Rayleigh waves are proposed to focus on full velocity spectrum (FVS) inversion of multimode surface waves, multi-offset multicomponent phase velocity analysis of surface waves, single-offset multicomponent group velocity analysis of surface waves, single-offset multicomponent polarization analysis of surface waves. This research will present new theories and its methodologies on multicomponent FVS inversion of near surface Rayleigh waves by multi-objective optimizer, will expand conventional theories of single-objective inversion of single-component surface waves, and will promote the progress of high-precision multicomponent surface wave exploration for near surface applications.
-
[1] 宋先海, 李端有, 顾汉明, 等.瑞雷波勘探理论及其应用[M].北京:中国水利水电出版社, 2010. [2] 曾求, 储日升, 盛敏汉, 等.基于地震背景噪声的四川威远地区浅层速度结构成像研究[J].地球物理学报, 2020, 63(3):944-955. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202003014 [3] 刘宇涛, 刘江平, 宋先海, 等.VTI介质瑞雷波频散曲线特征与对比分析[J].地质科技情报, 2018, 37(1):258-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201801036 [4] 顾汉明, 宋先海, 刘江平, 等.用瞬态瑞雷波反演横波速度评价高速公路压碾效果[J].地质科技情报, 2001, 20(2):100-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200102023 [5] 马维国, 蒙盛武, 全亚荣.物探检测方法在复合地基检测中的应用:以广州石化总厂航煤油罐复合地基为例[J].地质科技情报, 1999, 18(3):79-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb199903019 [6] Cho Y S.Non-destructive testing of high strength concrete using spectral analysis of surface waves[J].NDT&E International, 2003, 36(4):229-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a419583ac2acf563401416f4ff4226f [7] 夏江海.高频面波方法[M].武汉:中国地质大学出版社, 2015. [8] 夏江海, 高玲利, 潘雨迪, 等.高频面波方法的若干新进展[J].地球物理学报, 2015, 58(8):2519-2605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201508002 [9] Haskell N A.The dispersion of surface waves on multilayered media[J].Bulletin of the Seismological Society of America, 1953, 43(1):17-34. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=43/1/17 [10] Schwab F, Knopoff L.Surface-wave dispersion computations[J].Bulletin of the Seismological Society of America, 1970, 60(2):321-344. http://www.bssaonline.org/cgi/content/abstract/60/2/321 [11] Abo-Zena A.Dispersion function computations for unlimited frequency values[J].Geophysical Journal of the Royal Astronomical Society, 1979, 58:91-105. doi: 10.1111/j.1365-246X.1979.tb01011.x [12] Menke W.Comment on 'Dispersion function computations for unlimited frequency values' by Anas Abo-Zena[J].Geophysical Journal of the Royal Astronomical Society, 1979, 58:315-323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005880775 [13] Buchen P W, Ben-Hador R.Free-mode surface-wave computations[J].Geophysical Journal International, 1996, 124(3):869-887. doi: 10.1111/j.1365-246X.1996.tb05642.x [14] 张碧星, 喻明, 熊伟, 等.多层介质中有低速层出现时的陷模研究[J].中国有色金属学报, 1998, 8(2):340-346. http://www.cnki.com.cn/article/cjfd1998-zyxz802.032.htm [15] 凡友华, 刘家琦.层状介质中瑞雷面波的频散研究[J].哈尔滨工业大学学报, 2001, 33(5):577-581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb200105001 [16] 何耀锋, 陈蔚天, 陈晓非.利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J].地球物理学报, 2006, 49(4):1074-1081. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200604020 [17] 邵广周, 李庆春, 梁志强.液体表层层状介质导波频散曲线研究[J].地球物理学报, 2007, 50(3):915-920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200703033 [18] Xu Y, Xia J, Miller R D.Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach[J].Geophysics, 2007, 72(5):SM147-SM153. doi: 10.1190/1.2753831 [19] 周竹生, 刘喜亮, 熊孝雨.弹性介质中瑞雷面波有限差分法正演模拟[J].地球物理学报, 2007, 50(2):567-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200702030 [20] 熊章强, 张大洲, 秦臻, 等.瑞雷波数值模拟中的边界条件及模拟实例分析[J].中南大学学报:自然科学版, 2008, 39(4):824-830. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb200804033 [21] 张大洲, 熊章强, 顾汉明.高精度瑞雷波有限差分数值模拟及波场分析[J].地球物理学进展, 2009, 24(4):1313-1319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200904020 [22] 邵广周, 李庆春, 吴华.基于波场数值模拟的瑞利波频散曲线特征及各模式能量分布[J].石油地球物理勘探, 2015, 50(2):306-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt201502018 [23] 高静怀, 何洋洋, 马逸尘.黏弹性与弹性介质中Rayleigh面波特性对比研究[J].地球物理学报, 2012, 55(1):207-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201201020 [24] Zhang K, Luo Y, Xia J, et al.Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media[J].Soil Dynamics and Earthquake Engineering, 2011, 31(10):1332-1337. doi: 10.1016/j.soildyn.2011.05.004 [25] Chai H Y, Goh S H, Phoon K K, et al.Effects of source and cavity depths on wave fields in layered media[J].Journal of Applied Geophysics, 2014, 107:163-170. doi: 10.1016/j.jappgeo.2014.05.017 [26] Yu W F, Liu Z P.A numerical study of Rayleigh wave particle motions excited by a point source and Poisson's ratio for lateral inhomogeneous half-spaces[J].Journal of Applied Geophysics, 2015, 123:242-255. doi: 10.1016/j.jappgeo.2015.09.009 [27] 周红, 陈晓非.凹陷地形对Rayleigh面波传播影响的研究[J].地球物理学报, 2007, 50(4):1182-1189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200704027 [28] 张明财, 熊章强, 张大洲.基于MPI的三维瑞雷面波有限差分并行模拟[J].石油物探, 2013, 52(4):354-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sywt201304004 [29] Xiong Z Y, Liu Z P, Zhang K.An experimental study of Rayleigh waves based on seismo electric measurements[J].Exploration Geophysics, 2017, 48(3):226-236. doi: 10.1071/EG15065 [30] Park C B, Miller R D, Xia J.Multichannel analysis of surface waves[J].Geophysics, 1999, 64(3):800-808. doi: 10.1190/1.1444590 [31] Zhang S X, Chan L S, Xia J.The selection of field acquisition parameters for dispersion images from multichannel surface wave data[J].Pure and Applied Geophysics, 2004, 161(1):185-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58ad7d089b79a2dda0d21af545467f3a [32] Xu Y, Xia J, Miller R D.Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J].Journal of Applied Geophysics, 2006, 59(2):117-125. doi: 10.1016/j.jappgeo.2005.08.002 [33] Xia J, Xu Y, Chen C, et al.Simple equations guide high-frequency surface-wave investigation techniques[J].Soil Dynamics and Earthquake Engineering, 2006, 26(5):395-403. doi: 10.1016/j.soildyn.2005.11.001 [34] 刘康, 戴靠山, 许强, 等.埋入源多道面波分析中最小偏移距的估计方法[J].地球物理学报, 2018, 61(6):2421-2432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201806022 [35] 伍敦仕, 孙成禹, 林美言.基于互相关相移的主动源地震面波频散成像方法[J].地球物理学进展, 2017, 32(4):1693-1700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201704037 [36] Lu L Y, Zhang B X.The analysis of dispersion curves of Rayleigh waves in frequency-wavenumber domain[J].Canadian Geotechnical Journal, 2004, 41(4):583-598. doi: 10.1139/t04-005 [37] Dai K S, Liu K, Li X F, et al.Application of passive multichannel analysis of surface waves at sites close to underground railways-problems and a case study[J].Journal of Applied Geophysics, 2019, 164:191-199. doi: 10.1016/j.jappgeo.2019.03.009 [38] Li X X, Li Q C, Shen H Y.Rayleigh-wave imaging of loess sediments in southern margin of the Ordos Basin by improved frequency-wavenumber transform[J].Journal of Geophysics and Engineering, 2019, 16(1):77-84. doi: 10.1093/jge/gxy006 [39] Li X X, Li Q C, Lei Y H, et al.Active and passive source Rayleigh wave joint imaging of the shallow structure in the Caotan Camp area, southwestern Ordos Basin[J].Soil Dynamics and Earthquake Engineering, 2020, 130:1-7. [40] 邵广周, 李庆春.联合应用τ-p变换法和相移法提取面波频散曲线[J].石油地球物理勘探, 2010, 45(6):836-840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt201006008 [41] Cheng F, Xia J, Behm M, et al.Automated data selection in the tau-p domain:Application to passive surface wave imaging[J].Surveys in Geophysics, 2019, 40(5):1211-1228. doi: 10.1007/s10712-019-09530-2 [42] Luo Y, Xia J, Miller R D, et al.Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J].Pure and Applied Geophysics, 2008, 165(5):903-922. doi: 10.1007/s00024-008-0338-4 [43] 伍敦仕, 孙成禹, 林美言.基于频率-速度域多重信号分类的面波高分辨率频散成像方法[J].石油物探, 2017, 56(1):141-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sywt201701016 [44] 陈杰, 熊章强, 张大洲, 等.基于多模式的多重滤波方法提取瑞雷面波频散曲线[J].工程地球物理学报, 2018, 15(4):411-417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdqwlxb201804003 [45] Poggi V, Fäh D, Giardini D.Time-frequency-wavenumber analysis of surface waves using the continuous wavelet transform[J].Pure and Applied Geophysics, 2013, 170(3):319-335. doi: 10.1007/s00024-012-0505-5 [46] Kulesh M, Holschneider M, Diallo M S.Geophysical wavelet library:Applications of the continuous wavelet transform to the polarization and dispersion analysis of signals[J].Computers & Geosciences, 2008, 34(12):1732-1752. http://www.sciencedirect.com/science/article/pii/S0098300408001568 [47] 张大洲, 练小聪, 杨威, 等.基于多模式分离的S变换瑞雷波频散曲线提取[J].中南大学学报:自然科学版, 2015, 46(8):2950-2956. http://www.cnki.com.cn/article/cjfdtotal-zngd201508027.htm [48] Shao G Z, Tsoflias G P, Li C J.Detection of near-surface cavities by generalized S-transform of Rayleigh waves[J].Journal of Applied Geophysics, 2016, 129:53-65. doi: 10.1016/j.jappgeo.2016.03.041 [49] 杨振涛, 陈晓非, 潘磊, 等.基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J].地球物理学报, 2019, 62(1):298-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201901023 [50] Pan L, Chen X F, Wang J N, et al.Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J].Geophysical Journal International, 2019, 216(2):1276-1303. doi: 10.1093/gji/ggy479 [51] Li J, Chen Y Q, Schuster G T.Separation of multi-mode surface waves by supervised machine learning methods[J].Geophysical Prospecting, 2020, 68(4):1270-1280. doi: 10.1111/1365-2478.12927 [52] 徐义贤, 罗银河.噪声地震学方法及其应用[J].地球物理学报, 2015, 58(8):2618-2636. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201508004 [53] 徐佩芬, 李传金, 凌甦群, 等.利用微动勘察方法探测煤矿陷落柱[J].地球物理学报, 2009, 52(7):1923-1930. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200907028 [54] 徐佩芬, 侍文, 凌苏群, 等.二维微动剖面探测"孤石":以深圳地铁7号线为例[J].地球物理学报, 2012, 55(6):2120-2128. http://d.wanfangdata.com.cn/Periodical/dqwlxb201206034 [55] 徐佩芬, 李世豪, 凌苏群, 等.利用SPAC法估算地壳S波速度结构[J].地球物理学报, 2013, 56(1):3846-3854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201311026 [56] Wang J N, Wu G X, Chen X F.Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J].Journal of Geophysical Research:Solid Earth, 2019, 124(4):3708-3723. doi: 10.1029/2018JB016595 [57] 吴华礼, 陈晓非, 潘磊.基于频率-贝塞尔变换法的关东盆地S波速度成像[J].地球物理学报, 2019, 62(9):3400-3407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201909014 [58] 李雪燕, 陈晓非, 杨振涛, 等.城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J].地球物理学报, 2020, 63(1):247-255. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DQWX202001028 [59] Liu Y, Xia J, Cheng F, et al.Pseudo-linear-array analysis of passive surface waves based on beamforming[J].Geophysical Journal International, 2020, 221(1):640-650. doi: 10.1093/gji/ggaa024 [60] Xia J, Miller R D, Park C B.Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J].Geophysics, 1999, 64(3):691-700. doi: 10.1190/1.1444578 [61] Li X X, Li Q C.Near-surface ambient noise tomography in the Baogutu copper deposit area[J].Journal of Geophysics and Engineering, 2016, 13(6):868-874. doi: 10.1088/1742-2132/13/6/868 [62] Wu D S, Wang X W, Su Q, et al.A MATLAB package for calculating partial derivatives of surface-wave dispersion curves by a reduced delta matrix method[J].Applied Sciences, 2019, 9(23):1-21. http://www.researchgate.net/publication/337686617_A_MATLAB_Package_for_Calculating_Partial_Derivatives_of_Surface-Wave_Dispersion_Curves_by_a_Reduced_Delta_Matrix_Method/download [63] Zhang S X, Chan L S, Chen C Y, et al.Apparent phase velocities and fundamental-mode phase velocities of Rayleigh waves[J].Soil Dynamics and Earthquake Engineering, 2003, 23(7):563-569. doi: 10.1016/S0267-7261(03)00069-1 [64] Li J, Lin F C, Allam A, et al.Wave equation dispersion inversion of surface waves recorded on irregular topography[J].Geophysical Journal International, 2019, 217(1):346-360. doi: 10.1093/gji/ggz005 [65] Lei Y H, Shen H Y, Li X X, et al.Inversion of Rayleigh wave dispersion curves via adaptive GA and nested DLS[J].Geophysical Journal International, 2019, 218(1):547-559. doi: 10.1093/gji/ggz171 [66] Beaty K S, Schmitt D R, Sacchi M.Simulated annealing inversion of multimode Rayleigh-wave dispersion curves for geological structure[J].Geophysical Journal International, 2002, 151(2):622-631. doi: 10.1046/j.1365-246X.2002.01809.x [67] 周晓华, 林君, 陈祖斌, 等.改进的神经网络反演微动面波频散曲线[J].吉林大学学报:地球科学版, 2011, 41(3):900-906. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201103041 [68] Sambridge M.Geophysical inversion with a neighbourhood algorithm:I.Searching a parameter space[J].Geophysical Journal International, 1999, 138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x [69] Sambridge M.Geophysical inversion with a neighbourhood algorithm:II.Appraising the ensemble[J].Geophysical Journal International, 1999, 138(3):727-746. doi: 10.1046/j.1365-246x.1999.00900.x [70] Song X, Gu H, Zhang X, et al.Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J].Computers & Geosciences, 2008, 34(6):611-624. [71] Song X, Li D, Gu H, et al.Insights into performance of pattern search algorithms for high-frequency surface wave analysis[J].Computers & Geosciences, 2009, 35(8):1603-1619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0047facea004558b17ad23da62be0513 [72] Song X, Tang L, Lv X, et al.Shuffled complex evolution approach for effective and efficient surface wave analysis[J].Computers & Geosciences, 2012, 42:7-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=258469994b943962aaeb03c72cfc142f [73] Song X, Tang L, Lv X, et al.Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J].Journal of Applied Geophysics, 2012, 84:1-13. doi: 10.1016/j.jappgeo.2012.05.011 [74] Song X, Li L, Zhang X, et al.Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J].Journal of Applied Geophysics, 2014, 109:47-61. doi: 10.1016/j.jappgeo.2014.07.014 [75] Song X, Li L, Zhang X, et al.An implementation of differential search algorithm (DSA)for inversion of surface wave data[J].Journal of Applied Geophysics, 2014, 111:334-345. doi: 10.1016/j.jappgeo.2014.10.017 [76] Song X, Zhang X, Zhao S, et al.Backtracking search algorithm for effective and efficient surface wave analysis[J].Journal of Applied Geophysics, 2015, 114:19-31. doi: 10.1016/j.jappgeo.2015.01.002 [77] Song X, Gu H, Tang L, et al.Application of artificial bee colony algorithm on surface wave data[J].Computers & Geosciences, 2015, 83:219-230. http://dl.acm.org/citation.cfm?id=2828073 [78] Song X, Tang L, Zhao S, et al.Grey Wolf Optimizer for parameter estimation in surface waves[J].Soil Dynamics and Earthquake Engineering, 2015, 75:147-157. doi: 10.1016/j.soildyn.2015.04.004 [79] 杨博, 熊章强, 张大洲, 等.利用自适应混沌遗传粒子群算法反演瑞雷面波频散曲线[J].石油地球物理勘探, 2019, 54(6):1217-1227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt201906006 [80] 张碧星, 肖柏勋, 杨文杰, 等.瑞利波勘探中"之"字型频散曲线的形成机理及反演研究[J].地球物理学报, 2000, 43(4):557-567. http://www.cqvip.com/qk/94718X/200004/4527495.html [81] 张碧星, 鲁来玉, 鲍光淑.瑞利波勘探中"之"字形频散曲线研究[J].地球物理学报, 2002, 45(2):263-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200202013 [82] 凡友华, 陈晓非, 刘雪峰, 等.Rayleigh波频散方程高频近似分解和多模式激发数目[J].地球物理学报, 2007, 50(1):233-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200701029 [83] 刘雪明, 凡友华, 翟佳羽, 等.四种典型地层的瑞雷波"之"字型频散曲线数值模拟研究[J].地球物理学报, 2009, 52(12):3042-3050. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200912013 [84] 刘雪峰, 凡友华.Rayleigh波勘探中"之"字形频散曲线"起跳点"频率研究[J].地球物理学报, 2011, 54(8):2124-2135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201108020 [85] Zhang S X, Chan L S.Possible effects of misidentified mode number on Rayleigh wave inversion[J].Journal of Applied Geophysics, 2003, 53(1):17-29. doi: 10.1016/S0926-9851(03)00014-4 [86] Liu X F, Fan Y H.On the characteristics of high-frequency Rayleigh waves in stratified half-space[J].Geophysical Journal International, 2012, 190(2):1041-1057. doi: 10.1111/j.1365-246X.2012.05479.x [87] Xia J, Miller R D, Park C B, et al.Inversion of high frequency surface waves with fundamental and higher modes[J].Journal of Applied Geophysics, 2003, 52(1):45-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dcdd55e3312df29783ea968a4dbf0a5 [88] Lu L, Wang C, Zhang B.Inversion of multimode Rayleigh waves in the presence of a low-velocity layer:Numerical and laboratory study[J].Geophysical Journal International, 2007, 168(3):1235-1246. doi: 10.1111/j.1365-246X.2006.03258.x [89] 陈祥, 孙进忠.改进的等效半空间法及瑞雷波频散曲线反演[J].地球物理学报, 2006, 49(2):569-576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200602033 [90] Snieder R.Large-scale waveform inversions of surface waves for lateral heterogeneity.Part 2:Application to surface waves in Europe and the Mediterranean[J].Journal of Geophysical Research, 1988, 93(B10):12067-12080. doi: 10.1029/JB093iB10p12067 [91] Pérez Solano C, Donno D, Chauris H.Alternative waveform inversion for surface wave analysis in 2-Dmedia[J].Geophysical Journal International, 2014, 198(3):1359-1372. doi: 10.1093/gji/ggu211 [92] Yuan Y O, Simons Y J, Bozdag E.Multiscale adjoint waveform tomography for surface and body waves[J].Geophysics, 2015, 80(5):R281-R302. doi: 10.1190/geo2014-0461.1 [93] 傅磊, 刘四新.基于交叉梯度约束的地震初至纵波与瑞雷面波联合反演[J].地球物理学报, 2016, 59(12):4464-4472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201612009 [94] Koehn D, Meier T, Fehr M, et al.Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data[J].Near Surface Geophysics, 2016, 14(5):461-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3997/1873-0604.2016027 [95] Groos L, Schäfer M, Forbriger T, et al.Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves[J].Geophysics, 2017, 82(2):R109-R117. doi: 10.1190/geo2016-0284.1 [96] Xing Z, Mazzotti A.Two-grid full-waveform Rayleigh-wave inversion via a genetic algorithm:Part 1.Method and synthetic examples[J].Geophysics, 2019, 84(5):R817-R826. http://www.researchgate.net/publication/334091762_Two-grid_full-waveform_Rayleigh-wave_inversion_via_a_genetic_algorithm_part_1_-_method_and_synthetic_examples [97] Ivanov J, Miller R D, Xia J, et al.Joint analysis of refractions with surface waves:An inverse solution to the refraction-traveltime problem[J].Geophysics, 2006, 71(6):R131-R138. doi: 10.1190/1.2360226 [98] Dal Moro G.VS and VP vertical profiling via joint inversion of Rayleigh waves and refraction travel times by means of bi-objective evolutionary algorithm[J].Journal of Applied Geophysics, 2008, 66(1/2):15-24. http://www.sciencedirect.com/science/article/pii/S0926985108000876 [99] Dal Moro G, Pipan M.Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms[J].Journal of Applied Geophysics, 2007, 61(1):56-81. doi: 10.1016/j.jappgeo.2006.04.001 [100] Hayashi K, Matsuoka T, Hatakeyama H.Joint analysis of a surface-wave method and micro-gravity survey[J].Journal of Environmental & Engineering Geophysics, 2005, 10(2):175-184. [101] Wu P P, Tan H D, Peng M, et al.Joint inversion of 1-D magnetotelluric and surface-wave dispersion data with an improved multi-objective genetic algorithm and application to the aata of the Longmenshan fault zone[J].Pure and Applied Geophysics, 2018, 175(10):3591-3604. doi: 10.1007/s00024-018-1884-z [102] Wu P P, Tan H D, Lin C H, et al.Joint inversion of two-dimensional magnetotelluric and surface wave dispersion data with cross-gradient constraints[J].Geophysical Journal International, 2020, 221(2):938-950. doi: 10.1093/gji/ggaa045 [103] Mi B B, Xia J, Bradford J H, et al.Estimating near-surface shear wave velocity structures via multichannel analysis of Rayleigh and Love waves:An experiment at the Boise hydrogeophysical research site[J].Surveys in Geophysics, 2020, 41(2):323-341. doi: 10.1007/s10712-019-09582-4 [104] Mi B B, Hu Y, Xia J, et al.Estimation of horizontal-to-vertical spectral ratios (ellipticity)of Rayleigh waves from multistation active-seismic records[J].Geophysics, 2020, 84(6):EN81-EN92. http://www.researchgate.net/publication/335325762_Estimation_of_horizontal-to-vertical_spectral_ratios_ellipticity_of_Rayleigh_waves_from_multistation_active-seismic_records [105] 袁艺, 姚华建, 秦岩.基于邻域算法的瑞利面波垂直-水平振幅比及频散曲线联合反演及应用[J].地球物理学报, 2016, 59(3):959-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201603018 [106] Li G L, Niu F L, Yang Y J, et al.Joint inversion of Rayleigh wave phase velocity, particle motion, and teleseismic body wave data for sedimentary structures[J].Geophysical Research Letter, 2019, 46(12):6469-6478. doi: 10.1029/2019GL082746 [107] 张若晗, 徐佩芬, 凌甦群, 等.基于微动H/V谱比法的土石分界面探测研究-以济南中心城区为例[J].地球物理学报, 2020, 63(1):339-350. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DQWX202001038 [108] Ikeda T, Matsuoka T, Tsuji T, et al.Characteristics of horizontal component of Rayleigh waves in multimode analysis of surface waves[J].Geophysics, 2015, 80(1):EN1-EN11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=55336c24e3b08c72671384d9677fbf6e [109] Dal Moro G, Moura R M M, Moustafa S S R.Multi-component joint analysis of surface waves[J].Journal of Applied Geophysics, 2015, 119:128-138. doi: 10.1016/j.jappgeo.2015.05.014 [110] Xu Z B, Mikesell T.On the reliability of direct Rayleigh-wave estimation from multicomponent cross-correlations[J].Geophysical Journal International, 2017, 210(3):1388-1393. doi: 10.1093/gji/ggx228 [111] Qiu X M, Wang Y, Wang C.Rayleigh-wave dispersion analysis using complex-vector seismic data[J].Near Surface Geophysics, 2019, 17(5):487-499. doi: 10.1002/nsg.12060 [112] Luo Y, Xia J, Xu Y, et al.Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications[J].Journal of Applied Geophysics, 2011, 74(2/3):157-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=767b082bbe70f78fc307178d5b9197a9 [113] Dal Moro G.Surface wave analysis for near surface applications[M].Amsterdam, The Netherlands: Elsevier, 2015. [114] Mirjalili S, Mirjalili S M, Lewis A.Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69:46-61. doi: 10.1016/j.advengsoft.2013.12.007
点击查看大图
计量
- 文章访问数: 1128
- PDF下载量: 1208
- 被引次数: 0